Skip to main content
Log in

A structure-based cellular model reveals power-law rheology and stiffening of living cells under shear stress

基于结构的细胞模型揭示了剪应力下活细胞的幂律 流变学和硬化特性

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Shear stress plays a crucial role in many physiological processes, such as atherosclerosis, angiogenesis, and metastasis. However, how cells respond to static and dynamical shear stresses remains poorly understood. Here, we propose a structure-based cellular model, consisting of cell membrane, cytoplasm, and cytoskeleton, to explore the shear rheology of cells. By simulating the mechanical responses of a single cell under shear stress, we find that this model can reproduce both the universal power-law rheology at small deformations and stress stiffening at large deformations. Besides, the loss moduli of cells at high frequencies exhibit a stronger frequency dependence than the storage moduli. Moreover, we present two master relations: one is between the power-law exponent and cell stiffness; the other is between cell stiffness and external forces. Our results are in broad agreement with experiments. The self-similar hierarchical theory offers a physical explanation of the power-law responses of cells under shear stress. In addition, we consider the geometrical nonlinearity of single filaments to account for the stress stiffening of cells. The present model can be used to examine the effects of shear flow on living cells in physiological environments.

摘要

剪应力在许多生理过程中都起着至关重要的作用, 例如动脉粥样硬化、血管生成和肿瘤转移等. 然而, 细胞对静态和动态剪应 力的响应仍然知之甚少. 考虑细胞膜、细胞质和细胞骨架等结构特征, 本文提出了一个基于结构的细胞模型以探究细胞的剪切流变学. 通过模拟单个细胞在剪应力下的力学响应, 我们发现该模型可以再现细胞小变形时的幂律流变学和大变形时的应力硬化特性. 此外, 细胞在高频下的损耗模量表现出比存储模量更强的频率依赖性. 进而, 我们提出了两个重要关系: 一个是幂律指数和细胞刚度之间的 关系; 另一个是在细胞刚度和外力之间的关系. 我们的预测结果与很多实验结果一致. 自相似多级理论为细胞在剪应力下的幂律响应 提供了物理解释. 此外, 我们考虑了单根纤维的几何非线性, 以便解释细胞的应力硬化. 本模型可用于研究剪切流动对生理环境下活细 胞的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. P. Dowling, W. Ronan, G. Ofek, V. S. Deshpande, R. M. McMeeking, K. A. Athanasiou, and J. P. McGarry, The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: A computational and experimental investigation, J. R. Soc. Interface. 9, 3469 (2012).

    Article  Google Scholar 

  2. C. Souilhol, J. Serbanovic-Canic, M. Fragiadaki, T. J. Chico, V. Rid-ger, H. Roddie, and P. C. Evans, Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes, Nat. Rev. Cardiol. 17, 52 (2020).

    Article  Google Scholar 

  3. D. A. Fletcher, and R. D. Mullins, Cell mechanics and the cytoskeleton, Nature 463, 485 (2010).

    Article  Google Scholar 

  4. P. Lappalainen, T. Kotila, A. Jégou, and G. Romet-Lemonne, Biochemical and mechanical regulation of actin dynamics, Nat. Rev. Mol. Cell. Biol. 23, 836 (2022).

    Article  Google Scholar 

  5. N. Desprat, A. Richert, J. Simeon, and A. Asnacios, Creep function of a single living cell, Biophys. J. 88, 2224 (2005).

    Article  Google Scholar 

  6. P. Kollmannsberger, C. T. Mierke, and B. Fabry, Nonlinear viscoe-lasticity of adherent cells is controlled by cytoskeletal tension, Soft Matter 7, 3127 (2011).

    Article  Google Scholar 

  7. P. Fernández1, L. Heymann, A. Ott, N. Aksel, and P. A. Pullarkat, Shear rheology of a cell monolayer, New. J. Phys. 9, 419 (2007).

    Article  Google Scholar 

  8. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, Scaling the microrheology of living cells, Phys. Rev. Lett. 87, 148102 (2001).

    Article  Google Scholar 

  9. B. D. Hoffman, G. Massiera, K. M. van Citters, and J. C. Crocker, The consensus mechanics of cultured mammalian cells, Proc. Natl. Acad. Sci. USA 103, 10259 (2006).

    Article  Google Scholar 

  10. A. Rigato, A. Miyagi, S. Scheuring, and F. Rico, High-frequency microrheology reveals cytoskeleton dynamics in living cells, Nat. Phys. 13, 771 (2017).

    Article  Google Scholar 

  11. M. Balland, N. Desprat, D. Icard, S. Féréol, A. Asnacios, J. Bro-waeys, S. Hénon, and F. Gallet, Power laws in microrheology experiments on living cells: Comparative analysis and modeling, Phys. Rev. E 74, 021911 (2006).

    Article  Google Scholar 

  12. P. Kollmannsberger, and B. Fabry, Linear and nonlinear rheology of living cells, Annu. Rev. Mater. Res. 41, 75 (2011).

    Article  Google Scholar 

  13. L. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, Fast and slow dynamics of the cytoskeleton, Nat. Mater 5, 636 (2006).

    Article  Google Scholar 

  14. G. H. Koenderink, M. Atakhorrami, F. C. Mackintosh, and C. F. Schmidt, High-frequency stress relaxation in semiflexible polymer solutions and networks, Phys. Rev. Lett. 96, 138307 (2006).

    Article  Google Scholar 

  15. P. Fernández, P. A. Pullarkat, and A. Ott, A master relation defines the nonlinear viscoelasticity of single fibroblasts, Biophys. J. 90, 3796 (2006).

    Article  Google Scholar 

  16. M. Sander, H. Dobicki, and A. Ott, Large amplitude oscillatory shear rheology of living fibroblasts: Path-dependent steady states, Biophys. J. 113, 1561 (2017).

    Article  Google Scholar 

  17. S. Wendling, C. Oddou, and D. Isabey, Stiffening response of a cellular tensegrity model, J. Theor. Biol. 196, 309 (1999).

    Article  Google Scholar 

  18. C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. R. Bausch, and K. Kroy, Glass transition and rheological redundancy in F-actin solutions, Proc. Natl. Acad. Sci. USA 104, 20199 (2007).

    Article  Google Scholar 

  19. C. Sultan, D. Stamenović, and D. E. Ingber, A computational tensegrity model predicts dynamic rheological behaviors in living cells, Ann. Biomed. Eng. 32, 520 (2004).

    Article  Google Scholar 

  20. J. T. Hang, Y. Kang, G. K. Xu, and H. Gao, A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells, Nat. Commun. 12, 6067 (2021).

    Article  Google Scholar 

  21. J. T. Hang, G. K. Xu, and H. Gao, Frequency-dependent transition in power-law rheological behavior of living cells, Sci. Adv. 8, eabn6093 (2022).

    Article  Google Scholar 

  22. M. L. Gardel, F. Nakamura, J. Hartwig, J. C. Crocker, T. P. Stossel, and D. A. Weitz, Stress-dependent elasticity of composite actin networks as a model for cell behavior, Phys. Rev. Lett. 96, 088102 (2006).

    Article  Google Scholar 

  23. G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. MacKintosh, J. H. Hartwig, T. P. Stossel, and D. A. Weitz, An active biopolymer network controlled by molecular motors, Proc. Natl. Acad. Sci. USA 106, 15192 (2009).

    Article  Google Scholar 

  24. N. Minc, D. Burgess, and F. Chang, Influence of cell geometry on division-plane positioning, Cell 144, 414 (2011).

    Article  Google Scholar 

  25. J. Hu, Y. Li, Y. Hao, T. Zheng, S. K. Gupta, G. A. Parada, H. Wu, S. Lin, S. Wang, X. Zhao, R. D. Goldman, S. Cai, and M. Guo, High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments, Proc. Natl. Acad. Sci. USA 116, 17175 (2019).

    Article  Google Scholar 

  26. O. Thoumine, O. Cardoso, and J. J. Meister, Changes in the mechanical properties of fibroblasts during spreading: A micromanipulation study, Eur. Biophys. J. 28, 222 (1999).

    Article  Google Scholar 

  27. F. Gittes, B. Mickey, J. Nettleton, and J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape., J. Cell Biol. 120, 923 (1993).

    Article  Google Scholar 

  28. E. A. Evans, A new material concept for the red cell membrane, Biophys. J. 13, 926 (1973).

    Article  Google Scholar 

  29. J. Hu, S. Jafari, Y. Han, A. J. Grodzinsky, S. Cai, and M. Guo, Size-and speed-dependent mechanical behavior in living mammalian cytoplasm, Proc. Natl. Acad. Sci. USA 114, 9529 (2017).

    Article  Google Scholar 

  30. R. D. Kamm, A. McVittie, and M. Bathe, On the Role of continuum models in mechanobiology: Proceedings of ASME 2000 International Mechanical Engineering Congress and Exposition, Orlando, 2000.

  31. M. L. Gardel, F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, and D. A. Weitz, Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties ofcells, Proc. Natl. Acad. Sci. USA 103, 1762 (2006).

    Article  Google Scholar 

  32. K. E. Kasza, G. H. Koenderink, Y. C. Lin, C. P. Broedersz, W. Messner, F. Nakamura, T. P. Stossel, F. C. Mackintosh, and D. A. Weitz, Nonlinear elasticity of stiff biopolymers connected by flexible linkers, Phys. Rev. E 79, 041928 (2009).

    Article  Google Scholar 

  33. D. S. Fudge, K. H. Gardner, V. T. Forsyth, C. Riekel, and J. M. Gosline, The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads, Biophys. J. 85, 2015 (2003).

    Article  Google Scholar 

  34. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, N. A. Taback, E. J. Millet, and J. J. Fredberg, Time scale and other invariants of integrative mechanical behavior in living cells, Phys. Rev. E 68, 041914 (2003).

    Article  Google Scholar 

  35. J. M. Maloney, E. Lehnhardt, A. F. Long, and K. J. Van Vliet, Mechanical fluidity of fully suspended biological cells, Biophys. J. 105, 1767 (2013).

    Article  Google Scholar 

  36. C. P. Broedersz, and F. C. MacKintosh, Modeling semiflexible polymer networks, Rev. Mod. Phys. 86, 995 (2014).

    Article  Google Scholar 

  37. T. Wakatsuki, M. S. Kolodney, G. I. Zahalak, and E. L. Elson, Cell mechanics studied by a reconstituted model tissue, Biophys. J. 79, 2353 (2000).

    Article  Google Scholar 

  38. C. Verdier, Rheological properties of living materials. From cells to tissues, J. Theor. Med. 5, 67 (2003).

    Article  MATH  Google Scholar 

  39. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science & Business Media, New York, 2013).

    Google Scholar 

  40. A. J. Licup, S. Münster, A. Sharma, M. Sheinman, L. M. Jawerth, B. Fabry, D. A. Weitz, and F. C. MacKintosh, Stress controls the mechanics of collagen networks, Proc. Natl. Acad. Sci. USA 112, 9573 (2015).

    Article  Google Scholar 

  41. S. H. Li, H. Gao, and G. K. Xu, Network dynamics of the nonlinear power-law relaxation of cell cortex, Biophys. J. 121, 4091 (2022).

    Article  Google Scholar 

  42. N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science 260, 1124 (1993).

    Article  Google Scholar 

  43. N. Wang, K. Naruse, D. Stamenović, J. J. Fredberg, S. M. Mijailovich, I. M. Tolić-Nørrelykke, T. Polte, R. Mannix, and D. E. Ingber, Mechanical behavior in living cells consistent with the tensegrity model, Proc. Natl. Acad. Sci. USA 98, 7765 (2001).

    Article  Google Scholar 

  44. X. Shu, N. Li, Y. Wu, W. Li, X. Zhang, P. Li, D. Lü, S. Lü, and M. Long, Mechanotransduction of liver sinusoidal endothelial cells under varied mechanical stimuli, Acta Mech. Sin. 37, 201 (2021).

    Article  Google Scholar 

  45. H. Wang, J. T. Hang, Z. Chang, and G. K. Xu, Static and dynamic mechanics of cell monolayers: A multi-scale structural model, Acta Mech. Sin. 38, 222006 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 12072252), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Dong Liang: Software, Validation, Formal analysis, Investigation, Data curation, Writing–original draft, Visualization. Jiu-Tao Hang: Conceptualization, Formal analysis, Writing–original draft, Writing–review & editing. Guang-Kui Xu: Conceptualization, Methodology, Formal analysis, Resources, Data curation, Writing–original draft, Writing–review & editing, Visualization, Project administration, Funding acquisition.

Corresponding author

Correspondence to Guang-Kui Xu  (徐光魁).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Hang, JT. & Xu, GK. A structure-based cellular model reveals power-law rheology and stiffening of living cells under shear stress. Acta Mech. Sin. 39, 623129 (2023). https://doi.org/10.1007/s10409-023-23129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23129-x

Navigation