Skip to main content
Log in

Cubic-symmetry acoustic metamaterials with roton-like dispersion relations

具有类roton色散关系的立方对称声学超材料

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In our previous work, we have shown that nonlocal interactions in acoustic metamaterials can lead to highly unusual roton-like dispersion relations exhibiting a minimum of frequency versus wavenumber similar to that of superfluid Helium-4. However, this behavior was limited to only one or two propagation directions of sound. Here, we design a three-dimensional cubic-symmetry airborne acoustic metamaterial with nonlocal interactions along three orthogonal directions. By using numerical finite-element calculations, we show that the metamaterial supports roton-like behavior along all three orthogonal directions, but the behavior is far from isotropic. We compare these calculations with a simplified semi-analytical model, leading to good overall agreement. Corresponding experiments appear in reach, but are demanding due to the required dense and complex three-dimensional network of acoustic channels that connect compartments of air.

摘要

我们之前的工作表明, 声学超材料中的非局部相互作用会导致极不寻常的类roton色散关系, 即色散曲线存在局部极小值, 与超 流体液氦-4类似. 然而, 这种行为仅限于一个或两个声传播方向. 在这里, 我们设计了一种三维立方对称声学超材料, 沿三个正交方向具 有非局部相互作用. 有限元计算表明超材料在三个正交方向具有类roton行为, 但其行为远非各向同性. 有限元结果与半解析模型结果 吻合良好. 相应的实验正在探索中, 由于需要密集而复杂的三维声学管道, 实验要求较高.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, New York, 1999).

    Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).

    MATH  Google Scholar 

  3. R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, Sound attenuation by sculpture, Nature 378, 241 (1995).

    Article  Google Scholar 

  4. P. A. Deymier, Acoustic Metamaterials and Phononic Crystals (Springer, New York, 2013).

    Book  Google Scholar 

  5. Z. Liang, and J. Li, Extreme acoustic metamaterial by coiling up space, Phys. Rev. Lett. 108, 114301 (2012).

    Article  Google Scholar 

  6. T. Frenzel, J. David Brehm, T. Bückmann, R. Schittny, M. Kadic, and M. Wegener, Three-dimensional labyrinthine acoustic metamaterials, Appl. Phys. Lett. 103, 061907 (2013).

    Article  Google Scholar 

  7. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials, Nature 525, 77 (2015).

    Article  Google Scholar 

  8. S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1, 1 (2016).

    Article  Google Scholar 

  9. Y. Chen, M. Kadic, and M. Wegener, Roton-like acoustical dispersion relations in 3D metamaterials, Nat. Commun. 12, 3278 (2021).

    Article  Google Scholar 

  10. J. A. I. Martínez, M. F. Groβ, Y. Chen, T. Frenzel, V. Laude, M. Kadic, and M. Wegener, Experimental observation of roton-like dispersion relations in metamaterials, Sci. Adv. 7, m2189 (2021).

    Article  Google Scholar 

  11. K. Wang, Y. Chen, M. Kadic, C. Wang, and M. Wegener, Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials, Commun. Mater. 3, 35 (2022).

    Article  Google Scholar 

  12. Y. Chen, M. A. A. Abouelatta, K. Wang, M. Kadic, and M. Wegener, Nonlocal cable-network metamaterials, Adv. Mater. 35, 2209988 (2023).

    Article  Google Scholar 

  13. L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications, New York, 1953).

    MATH  Google Scholar 

  14. L. Landau, Theory of the superfluidity of helium II, Phys. Rev. 60, 356 (1941).

    Article  MATH  Google Scholar 

  15. R. P. Feynman, Atomic theory of the two-fluid model of liquid helium, Phys. Rev. 94, 262 (1954).

    Article  MATH  Google Scholar 

  16. H. Godfrin, K. Beauvois, A. Sultan, E. Krotscheck, J. Dawidowski, B. Fåk, and J. Ollivier, Dispersion relation of Landau elementary excitations and thermodynamic properties of superfluid 4He, Phys. Rev. B 103, 104516 (2021).

    Article  Google Scholar 

  17. R. Fleury, Non-local oddities, Nat. Phys. 17, 766 (2021).

    Article  Google Scholar 

  18. Z. Zhu, Z. Gao, G. G. Liu, Y. Ge, Y. Wang, X. Xi, B. Yan, F. Chen, P. P. Shum, H. Sun, and Y. Yang, Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials, New J. Phys. 24, 123019 (2022).

    Article  Google Scholar 

  19. L. Iorio, J. M. De Ponti, F. Maspero, and R. Ardito, Roton-like dispersion via polarisation change for elastic wave energy control in graded delay-lines, arXiv: 2211.09431.

  20. J. G. Cui, T. Yang, M. Q. Niu, and L. Q. Chen, Tunable roton-like dispersion relation with parametric excitations, J. Appl. Mech. 89, 111005 (2022).

    Article  Google Scholar 

  21. G. J. Chaplain, I. R. Hooper, A. P. Hibbins, and T. A. Starkey, Reconfigurable elastic metamaterials: Engineering dispersion with Meccano™, arXiv: 2206.10487.

  22. Q. Wu, P. Shivashankar, X. Xu, Y. Chen, and G. Huang, Engineering nonreciprocal wave dispersion in a nonlocal micropolar metabeam, J. Compos. Mater. 57, 40562 (2022).

    Google Scholar 

  23. L. Yang, and L. Wang, Gradient continuum model of nonlocal metamaterials with long-range interactions, Phys. Scr. 98, 015019 (2023).

    Article  Google Scholar 

  24. A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications (Springer, New York, 2019).

    Book  Google Scholar 

  25. J. Li, and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E 70, 55602 (2004).

    Article  Google Scholar 

  26. D. Forcella, C. Prada, and R. Carminati, Causality, nonlocality, and negative refraction, Phys. Rev. Lett. 118, 134301 (2017).

    Article  Google Scholar 

  27. V. M. Agranovich, and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Springer, Berlin, Heidelberg, 2013).

    Google Scholar 

  28. Y. Chen, K. Wang, M. Kadic, S. Guenneau, C. Wang, and M. Wegener, Phonon transmission through a nonlocal metamaterial slab, Commun. Phys. 6, 75 (2023).

    Article  Google Scholar 

  29. B. Hu, J. Liu, Y. Wang, B. Zhang, and H. Shen, Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory, Acta Mech. Sin. 37, 1446 (2021).

    Article  MathSciNet  Google Scholar 

  30. Y. Huang, M. Feng, and X. Chen, Stability analysis of quasicrystal torsion micromirror actuator based on the strain gradient theory, Acta Mech. Sin. 38, 521390 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

Ke Wang acknowledges support by the China Scholarship Council (CSC). This research has additionally been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster “3D Matter Made to Order” (Grant No. EXC-2082/1-390761711), which has also been supported by the Carl Zeiss Foundation through the “Carl-Zeiss-Foundation-Focus@HEiKA”, by the State of Baden-Württemberg, and by the Karlsruhe Institute of Technology (KIT). We further acknowledge support by the Helmholtz program “Materials Systems Engineering” (MSE). Muamer Kadic is grateful for support by the EIPHI Graduate School (Grant No. ANR-17-EURE-0002). Changguo Wang is grateful for support by the National Natural Science Foundation of China (Grant No. 12172102).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ke Wang and Yi Chen performed the numerical simulations and theoretical derivations. Ke Wang and Muamer Kadic designed the metamaterials. Yi Chen and Martin Wegener wrote the first draft. Changguo Wang and Martin Wegener supervised the effort. All authors discussed the results and contributed to the writing and reviewing of the manuscript.

Corresponding author

Correspondence to Ke Wang  (王珂).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Chen, Y., Kadic, M. et al. Cubic-symmetry acoustic metamaterials with roton-like dispersion relations. Acta Mech. Sin. 39, 723020 (2023). https://doi.org/10.1007/s10409-023-23020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23020-x

Keywords

Navigation