Skip to main content
Log in

Experimental study on transient flow patterns in simplified saccular intracranial aneurysm models using particle image velocimetry

囊状脑动脉瘤简化模型内瞬态流场特性的粒子图像测速技术(PIV)实验研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The hemodynamics of intracranial aneurysm (IA) comprises complex transient flow patterns that affect its growth and rupture. Owing to the combined effects of geometrical factors and pulsatile flow conditions, the transient flow patterns in the IA are still unclear. The purpose of this work is to reveal the effect of the aspect ratio (AR, sac height/neck width) on the evolution of the internal flow patterns and the hemodynamics of the IA. We proposed an easy method to fabricate three simplified elastic IA models and measured the transient flow characteristics by using particle image velocimetry (PIV). Transient vortex structures in the IA modes during a cardiac cycle were systemically measured and many new flow phenomena were found, including the vortex morphology (size, structure, and core location), a high-speed jet, wall compliance effects, and three flow modes during retrograde flow phase. The results show that the AR of the IA affects the transient flow patterns as well as the wall shear stress (WSS) in complex ways. The results could deepen our understanding of the transient flow behaviors in IA and guide related clinical studies.

摘要

颅内动脉瘤(Intracranial aneurysm, IA)内复杂的瞬态流场特性对动脉瘤生长和破裂有重要影响. 由于几何参数和流场脉动条件的共同影响, 脑动脉瘤瞬态流场特性尚不清楚. 为了揭示动脉瘤几何比率(AR, 囊高/颈部宽度)对内部流场特性演化和血流动力学参数的影响, 提出了一种基于液滴成型的新方法, 制作了三个简化、弹性、囊状脑动脉瘤模型, 利用粒子图像测速技术(Particleimage velocimetry, PIV), 开展了瞬态流场特性测速实验, 系统研究了不同心动周期内的瞬态流场结构, 包括涡胞形态(尺寸、形状和涡心位置等)、高速射流、壁面顺应性和三种逆流状态下的流动模式等. 研究结果表明, 脑动脉瘤几何比率对瞬态流场特性和壁面剪切应力的影响复杂, 深化了对脑动脉瘤瞬态流场特性的认识, 对相关临床研究有一定的指导价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bonneville, N. Sourour, and A. Biondi, Intracranial aneurysms: An overview, NeuroImag. Clin. N. Am. 16, 371 (2006).

    Article  Google Scholar 

  2. M. Epshtein, and N. Korin, Mapping the transport kinetics of molecules and particles in idealized intracranial side aneurysms, Sci. Rep. 8, 8528 (2018).

    Article  Google Scholar 

  3. Y. Shimogonya, and S. Fukuda, Computational and experimental studies into the hemodynamics of cerebral aneurysms, J. Biomech. Sci. Eng. 11, 15–00488 (2016).

    Article  Google Scholar 

  4. D. O. Wiebers, Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment, Lancet 362, 103 (2003).

    Article  Google Scholar 

  5. B. Weir, Unruptured intracranial aneurysms: A review, J. Neurosurg. 96, 3 (2002).

    Article  Google Scholar 

  6. S. V. Frolov, S. V. Sindeev, D. Liepsch, and A. Balasso, Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids, Technol. Health Care 24, 317 (2016).

    Article  Google Scholar 

  7. M. L. Raghavan, B. Ma, and R. E. Harbaugh, Quantified aneurysm shape and rupture risk, J. Neurosurg. 102, 355 (2005).

    Article  Google Scholar 

  8. J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman, Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. Neuroradiol. 26, 2550 (2005).

    Google Scholar 

  9. J. Frösen, R. Tulamo, A. Paetau, E. Laaksamo, M. Korja, A. Laakso, M. Niemelä, and J. Hernesniemi, Saccular intracranial aneurysm: Pathology and mechanisms, Acta Neuropathol. 123, 773 (2012).

    Article  Google Scholar 

  10. J. Xiang, S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng, Hemodynamic-morphologic discriminants for intracranial aneurysm rupture, Stroke 42, 144 (2011).

    Article  Google Scholar 

  11. G. J. Sheard, Flow dynamics and wall shear-stress variation in a fusiform aneurysm, J. Eng. Math. 64, 379 (2009).

    Article  MATH  Google Scholar 

  12. E. L. Leemans, B. M. W. Cornelissen, G. Rosalini, D. Verbaan, J. J. Schneiders, R. van den Berg, W. P. Vandertop, E. T. van Bavel, C. H. Slump, C. B. L. M. Majoie, and H. A. Marquering, Impact of intracranial aneurysm morphology and rupture status on the particle residence time, J. NeuroImag. 29, 487 (2019).

    Article  Google Scholar 

  13. H. Ujiie, H. Tachibana, O. Hiramatsu, A. L. Hazel, T. Matsumoto, Y. Ogasawara, H. Nakajima, T. Hori, K. Takakura, and F. Kajiya, Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: A possible index for surgical treatment of intracranial aneurysms, Neurosurgery 45, 119 (1999).

    Google Scholar 

  14. A. Nader-Sepahi, M. Casimiro, J. Sen, and N. D. Kitchen, Is aspect ratio a reliable predictor of intracranial aneurysm rupture? Neurosurgery 54, 1343 (2004).

    Article  Google Scholar 

  15. B. Weir, C. Amidei, G. Kongable, J. M. Findlay, N. F. Kassell, J. Kelly, L. Dai, and T. G. Karrison, The aspect ratio (dome/neck) of ruptured and unruptured aneurysms, J. Neurosurg. 99, 447 (2003).

    Article  Google Scholar 

  16. G. Paál, Á. Ugron, I. Szikora, and I. Bojtár, Flow in simplified and real models of intracranial aneurysms, Int. J. Heat Fluid Flow 28, 653 (2007).

    Article  Google Scholar 

  17. R. Yamaguchi, H. Ujiie, S. Haida, N. Nakazawa, and T. Hori, Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery, Heart Vessels 23, 60 (2008).

    Article  Google Scholar 

  18. H. Ujiie, C. Shinohara, T. Higa, K. Kato, S. Yoshimoto, and T. Hori, Intraaneurysmal flow and aspect ratio (dome/neck), J. Biorheol. 23, 41 (2009).

    Article  Google Scholar 

  19. B. Czaja, G. Závodszky, V. Azizi Tarksalooyeh, and A. G. Hoekstra, Cell-resolved blood flow simulations of saccular aneurysms: Effects of pulsatility and aspect ratio, J. R. Soc. Interface. 15, 20180485 (2018).

    Article  Google Scholar 

  20. Q. Wang, W. Wang, Z. Fei, Y. Liu, and Z. Cao, Simulation of blood flow in intracranial ICA-pcoma aneurysm via computational fluid dymamics modeling, J. Hydrodyn. 21, 583 (2009).

    Article  Google Scholar 

  21. K. Fukazawa, F. Ishida, Y. Umeda, Y. Miura, S. Shimosaka, S. Matsushima, W. Taki, and H. Suzuki, Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points, World Neurosurg. 83, 80 (2015).

    Article  Google Scholar 

  22. T. B. Le, I. Borazjani, and F. Sotiropoulos, Pulsatile flow effects on the hemodynamics of intracranial aneurysms, J. Biomech. Eng. 132, (2010).

  23. H. A. Himburg, S. E. Dowd, and M. H. Friedman, Frequency-dependent response of the vascular endothelium to pulsatile shear stress, Am. J. Physiol.-Heart Circulatory Physiol. 293, H645 (2007).

    Article  Google Scholar 

  24. A. Y. Usmani, and K. Muralidhar, Unsteady hemodynamics in intracranial aneurysms with varying dome orientations, J. Fluids Eng. 143, 061206 (2021).

    Article  Google Scholar 

  25. H. Asgharzadeh, and I. Borazjani, Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms, Comput. Math. Methods Med. 2016, 1 (2016).

    Article  Google Scholar 

  26. H. Asgharzadeh, and I. Borazjani, A non-dimensional parameter for classification of the flow in intracranial aneurysms. I. Simplified geometries, Phys. Fluids 31, 031904 (2019).

    Article  Google Scholar 

  27. H. Asgharzadeh, H. Asadi, H. Meng, and I. Borazjani, A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries, Phys. Fluids 31, 031905 (2019).

    Article  Google Scholar 

  28. H. Asgharzadeh, A. Shahmohammadi, N. Varble, E. I. Levy, H. Meng, and I. Borazjani, A simple flow classification parameter can discriminate rupture status in intracranial aneurysms, Neurosurgery 87, E557 (2020).

    Article  Google Scholar 

  29. P. Bouillot, O. Brina, R. Ouared, K. O. Lovblad, M. Farhat, and V. M. Pereira, Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: Hemodynamic transition related to the stent design, PLoS One 9, e113762 (2014).

    Article  Google Scholar 

  30. M. C. Brindise, S. Rothenberger, B. Dickerhoff, S. Schnell, M. Markl, D. Saloner, V. L. Rayz, and P. P. Vlachos, Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics, J. R. Soc. Interface. 16, 20190465 (2019).

    Article  Google Scholar 

  31. D. M. Sforza, C. M. Putman, and J. R. Cebral, Hemodynamics of cerebral aneurysms, Annu. Rev. Fluid Mech. 41, 91 (2009).

    Article  MATH  Google Scholar 

  32. N. Varble, V. M. Tutino, J. Yu, A. Sonig, A. H. Siddiqui, J. M. Davies, and H. Meng, Shared and distinct rupture discriminants of small and large intracranial aneurysms, Stroke 49, 856 (2018).

    Article  Google Scholar 

  33. J. R. Cebral, F. Mut, J. Weir, and C. Putman, Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms, AJNR Am. J. Neuroradiol. 32, 145 (2011).

    Article  Google Scholar 

  34. M. R. Diagbouga, S. Morel, P. Bijlenga, and B. R. Kwak, Role of hemodynamics in initiation/growth of intracranial aneurysms, Eur. J. Clin. Invest. 48, e12992 (2018).

    Article  Google Scholar 

  35. T. B. Le, Dynamic modes of inflow jet in brain aneurysms, J. Biomech. 116, 110238 (2021).

    Article  Google Scholar 

  36. C. Roloff, D. Stucht, O. Beuing, and P. Berg, Comparison of intracranial aneurysm flow quantification techniques: Standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD, J. NeuroIntervent. Surg. 11, 275 (2019).

    Article  Google Scholar 

  37. P. Bouillot, O. Brina, R. Ouared, K. O. Lovblad, V. M. Pereira, and M. Farhat, Multi-time-lag PIV analysis of steady and pulsatile flows in a sidewall aneurysm, Exp. Fluids 55, 1746 (2014).

    Article  Google Scholar 

  38. C. Y. Chen, R. Antón, M. Hung, P. Menon, E. A. Finol, and K. Pekkan, Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling, J. Biomech. Eng. 136, 031001 (2014).

    Article  Google Scholar 

  39. M. Y. Yousif, D. W. Holdsworth, and T. L. Poepping, A blood-mimicking fluid for particle image velocimetry with silicone vascular models, Exp. Fluids 50, 769 (2011).

    Article  Google Scholar 

  40. T. Morino, T. Tanoue, S. Tateshima, F. Vinuela, and K. Tanishita, Intra-aneurysmal blood flow based on patient-specific CT angiogram, Exp. Fluids 49, 485 (2010).

    Article  Google Scholar 

  41. T. Tanoue, S. Tateshima, J. P. Villablanca, F. Viñuela, and K. Tanishita, Wall shear stress distribution inside growing cerebral aneurysm, AJNR Am. J. Neuroradiol. 32, 1732 (2011).

    Article  Google Scholar 

  42. M. Raschi, F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela, T. Tanoue, K. Tanishita, and J. R. Cebral, CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm, Int. J. Numer. Meth. Biomed. Eng. 28, 214 (2012).

    Article  MATH  Google Scholar 

  43. M. D. Ford, H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman, PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models, J. Biomech. Eng. 130, 021015 (2008).

    Article  Google Scholar 

  44. S. Tupin, K. M. Saqr, and M. Ohta, Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: Comparative PIV experiments, Exp. Fluids 61, 1 (2020).

    Article  Google Scholar 

  45. F. Chassagne, M. C. Barbour, V. K. Chivukula, N. Machicoane, L. J. Kim, M. R. Levitt, and A. Aliseda, The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 1. Fluid mechanics in the cavity as a canonical flow representing intracranial aneurysms, J. Fluid Mech. 915, A123 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Z. Mu, X. Y. Li, Q. Z. Chi, S. Q. Yang, P. D. Zhang, C. J. Ji, Y. He, and G. Gao, Experimental and numerical study of the effect of pulsatile flow on wall displacement oscillation in a flexible lateral aneurysm model, Acta Mech. Sin. 35, 1120 (2019).

    Article  Google Scholar 

  47. M. C. Barbour, F. Chassagne, V. K. Chivukula, N. Machicoane, L. J. Kim, M. R. Levitt, and A. Aliseda, The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 2. The haemodynamics of intracranial aneurysms treated with flow-diverting stents, J. Fluid Mech. 915, A124 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  48. T. B. Le, D. R. Troolin, D. Amatya, E. K. Longmire, and F. Sotiropoulos, Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation, Ann. Biomed. Eng. 41, 2157 (2013).

    Article  Google Scholar 

  49. L. Parlea, R. Fahrig, D. W. Holdsworth, and S. P. Lownie, An analysis of the geometry of saccular intracranial aneurysms, Am. J. Neuroradiol. 20, 1079 (1999).

    Google Scholar 

  50. S. Adams, The natural course of unruptured cerebral aneurysms in a Japanese cohort, J. Emergency Med. 43, 1208 (2012).

    Google Scholar 

  51. T. M. Liou, and Y. C. Li, Effects of stent porosity on hemodynamics in a sidewall aneurysm model, J. Biomech. 41, 1174 (2008).

    Article  Google Scholar 

  52. E. A. H. Warnert, K. Murphy, J. E. Hall, and R. G. Wise, Noninvasive assessment of arterial compliance of human cerebral arteries with short inversion time arterial spin labeling, J. Cereb. Blood Flow Metab. 35, 461 (2015).

    Article  Google Scholar 

  53. G. M. Di Cicca, M. Martinez, C. Haigermoser, and M. Onorato, Three-dimensional flow features in a nominally two-dimensional rectangular cavity, Phys. Fluids 25, 097101 (2013).

    Article  Google Scholar 

  54. M. C. Brindise, M. M. Busse, and P. P. Vlachos, Density- and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index, Exp. Fluids 59, 173 (2018).

    Article  Google Scholar 

  55. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry-A Practical Guide, 2nd edn. (Springer, Berlin, 2007).

    Book  Google Scholar 

  56. R. B. Schwend, K. Hambsch, L. Baker, K. Kwan, A. Torruella, and S. M. Otis, Carotid steal syndrome: a case study, J. NeuroImag. 5, 195 (1995).

    Article  Google Scholar 

  57. C. P. Delaney, N. F. Couse, D. Mehigan, and T. V. Keaveny, Investigation and management of subclavian steal syndrome, Br. J. Surg. 81, 1093 (1994).

    Article  Google Scholar 

  58. R. Takeda, and H. Kurita, Tentorial branch of the superior cerebellar artery with retrograde flow to partially thrombosed large superior cerebellar artery aneurysm, World Neurosurg. 140, 271 (2020).

    Article  Google Scholar 

  59. N. Nakajima, S. Nagahiro, J. Satomi, Y. Tada, K. Nakajima, S. Sogabe, M. Hanaoka, S. Matsubara, M. Uno, and K. Satoh, Prevention of retrograde blood flow into large or giant internal carotid artery aneurysms by endovascular coil embolization with high-flow bypass: Surgical technique and long-term results, World Neurosurg. 83, 1127 (2015).

    Article  Google Scholar 

  60. K. Rhee, M. H. Han, and S. H. Cha, Changes of flow characteristics by stenting in aneurysm models: Influence of aneurysm geometry and stent porosity, Ann. Biomed. Eng. 30, 894 (2002).

    Article  Google Scholar 

  61. S.Ø. Wille, Pulsatile pressure and flow in an arterial aneurysm simulated in a mathematical model, J. Biomed. Eng. 3, 153 (1981).

    Article  Google Scholar 

  62. P. Scheel, C. Ruge, and M. Schöning, Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: Reference data and the effects of age, Ultrasound Med. Biol. 26, 1261 (2000).

    Article  Google Scholar 

  63. J. H. Kim, H. Han, Y. J. Moon, S. Suh, T. H. Kwon, J. H. Kim, K. Chong, and W. K. Yoon, Hemodynamic features of microsurgically identified, thin-walled regions of unruptured middle cerebral artery aneurysms characterized using computational fluid dynamics, Neurosurgery 86, 851 (2020).

    Article  Google Scholar 

  64. X. He, and D. N. Ku, Pulsatile flow in the human left coronary artery bifurcation: Average conditions, J. Biomech. Eng. 118, 74 (1996).

    Article  Google Scholar 

  65. A. M. Malek, Hemodynamic shear stress and its role in atherosclerosis, J. Am. Med. Assoc. 282, 2035 (1999).

    Article  Google Scholar 

  66. J. Hong, and A. Abraham, Snow-powered research on utility-scale wind turbine flows, Acta Mech. Sin. 36, 339 (2020).

    Article  Google Scholar 

  67. W. Wang, T. Tang, Q. D. Zhang, X. F. Wang, Z. Y. An, T. H. Tong, and Z. J. Li, Effect of water injection on the cavitation control: Experiments on a NACA66 (MOD) hydrofoil, Acta Mech. Sin. 36, 999 (2020).

    Article  Google Scholar 

  68. R. Huang, R. Zhang, Y. Wang, X. Luo, and L. Zhu, Experimental and numerical investigations into flow features in an intake duct for the waterjet propulsion under mooring conditions, Acta Mech. Sin. 37, 826 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 12172017 and 11872083) and Project of Beijing Municipal Education Commission (Grant Nos. KZ202210005006 and KZ202110005007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu  (刘赵淼).

Additional information

Author contributionsFeng Shen designed the research. Feng Shen and Xinran Lu wrote the first draft of the manuscript. Xinran Lu set up the experiment set-up and processed the experiment data. Zhaomiao Liu and Yan Pang helped organize the manuscript. Feng Shen, Xinran Lu and Yan Pang revised and edited the final version. Zhaomiao Liu provided funding and supervision for the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Lu, X., Pang, Y. et al. Experimental study on transient flow patterns in simplified saccular intracranial aneurysm models using particle image velocimetry. Acta Mech. Sin. 38, 322162 (2022). https://doi.org/10.1007/s10409-022-22162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22162-x

Navigation