Skip to main content
Log in

Numerical study on the laser ablative Rayleigh–Taylor instability

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The laser ablative Rayleigh–Taylor instability plays an important role in the ignition of inertial refinement fusion. An accurate simulation of this process is important to control the growth of flow instability during the implosion. In this paper, taking the simulations of the hydrodynamics, the laser energy deposition and the electronic thermal conductivity into consideration, a massively parallel laser ablative Rayleigh–Taylor instability code based on Euler method is developed. Some open source codes are used to improve the code development efficiency. The accuracy of the hydrodynamics simulation is tested by an analytical theory about the weakly nonlinear Rayleigh–Taylor instability with double interfaces. The benchmark of an one dimensional heat conductivity is used to test the accuracy of the thermal conductivity simulation. The laser ablative plane target and the laser ablative Rayleigh–Taylor instability are used to test the reliability of the code on the simulation of the whole laser ablative process. It is shown that the confidence of our numerical simulation code is high and the code framework we designed is effective. It can be a basis on studying the problems about the laser ablative instability in inertial refinement fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huntington, C.M., Shimony, A., Trantham, M., et al.: Ablative stabilization of Rayleigh–Taylor instabilities resulting from a laser-driven radiative shock. Phys. Plasmas 25, 052118 (2018)

    Article  Google Scholar 

  2. Zhang, H., Betti, R., Gopalaswamy, V., et al.: Nonlinear excitation of the ablative Rayleigh–Taylor instability for all wave numbers. Phys. Rev. E 97, 011203 (2018)

    Article  Google Scholar 

  3. Fan, Z., Luo, J.: Non-linear characteristics of Rayleigh–Taylor instable perturbations. Acta Mech. Sin. 24, 143–149 (2008)

    Article  Google Scholar 

  4. Zhang, H., Betti, R., Yan, R., et al.: Self-similar multimode bubble-front evolution of the ablative Rayleigh–Taylor instability in two and three dimensions. Phys. Rev. Lett. 121, 185002 (2018)

    Article  Google Scholar 

  5. He, X.T., Zhang, W.Y.: Inertial fusion research in China. Eur Phys. J. D 44, 227–231 (2007)

    Article  Google Scholar 

  6. Wang, L.F., Ye, W.H., He, X.T., Wu, J.F., et al.: Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci. China Phys. Mech. Astron. 60, 055201 (2017)

    Article  Google Scholar 

  7. Wang, L.F., Ye, W.H., He, X.T., et al.: Preheating ablation effects on the Rayleigh–Taylor instability in the weakly nonlinear regime. Phys. Plasmas 17, 122706 (2010)

    Article  Google Scholar 

  8. Lugomer, S.: Laser-generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities in a semiconfined configuration: bubble dynamics in the central region of the Gaussian spot. Phys. Scripta 94, 015001 (2018)

    Article  Google Scholar 

  9. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. Phys. Rep. 723, 1–160 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ye, W.H., He, X.T., Zhang, W.Y., Yu, M.Y.: Effect of preheating on the nonlinear evolution of the ablative Rayleigh–Taylor instability. Europhys. Lett. 96, 35002 (2011)

    Article  Google Scholar 

  11. Dahlburg, J.P., Gardner, J.H.: The effect of shape in the three-dimensional ablative Rayleigh–Taylor instability. \({\rm I}\): single-mode perturbations. Phys. Fluids B 5, 571–584 (1993)

    Article  Google Scholar 

  12. Dahlburg, J.P., Fyfe, D.E., Gardner, J.H., et al.: Three-dimensional multimode simulations of the ablative Rayleigh–Taylor instability. Phys. Plasmas 2, 2453–2459 (1995)

    Article  Google Scholar 

  13. Gittings, M., Weaver, R., Clover, M., et al.: The RAGE radiation-hydrodynamic code. Computat. Sci. Discov. 1, 015005 (2008)

    Article  Google Scholar 

  14. Marinak, M.M., Kerbel, G.D., Gentile, N.A., et al.: Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8(5), 2275–2280 (2001)

    Article  Google Scholar 

  15. Fryxell, B., Olson, K., Ricker, P., et al.: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131(1), 273 (2000)

    Article  Google Scholar 

  16. Woo, K.M., Betti, R., Shvarts, D., et al.: Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions. Phys. Plasmas 25, 052704 (2018)

    Article  Google Scholar 

  17. Zhou, Z., Ding, J., Zhai, Z.: Mode coupling in converging Richtmyer–Meshkov instability of dual-mode interface. Acta Mech. Sin. (2019). https://doi.org/10.1007/s10409-019-00917-3

    Article  Google Scholar 

  18. Tian, B., Fu, D., Ma, Y.: Numerical investigation of Richtmyer–Meshkov instability driven by cylindrical shocks. Acta Mech. Sin. 22, 9–16 (2006)

    Article  Google Scholar 

  19. Morpheus: https://sourceforge.net/p/morpheushydro (2014)

  20. Falgout, R.D., Jones, J.E., Yang, U.M.: Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 267–294. Springer, Berlin (2006)

    Book  Google Scholar 

  21. Chang, T.Q.: Laser-plasma Interaction and Laser Fusion. Hunan Science and Technology Press, Changsha (1991) (in Chinese)

  22. Spitzer, L., Harm, R.: Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977 (1953)

    Article  Google Scholar 

  23. Leer, B.V.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  24. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988)

    Article  MathSciNet  Google Scholar 

  25. Wang, L.F., Guo, H.Y., Wu, J.F., Ye, W.H., et al.: Weakly nonlinear Rayleigh–Taylor instability of a finite-thickness fluid layer. Phys. Plasmas 21, 122710 (2014)

    Article  Google Scholar 

  26. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  27. Roe, P.L.: Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18, 337–365 (1986)

    Article  MathSciNet  Google Scholar 

  28. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11575033, 11675026, and 11975053) and CAEP Foundation (Grant CX2019033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, L., Wu, J. et al. Numerical study on the laser ablative Rayleigh–Taylor instability. Acta Mech. Sin. 36, 789–796 (2020). https://doi.org/10.1007/s10409-020-00933-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00933-8

Keywords

Navigation