Skip to main content
Log in

Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The main aims of this study are to investigate the hydrodynamic performance of an autonomous underwater vehicle (AUV), calculate its hydrodynamic coefficients, and consider the flow characteristics of underwater bodies. In addition, three important parts of the SUBOFF bare hull, namely the main body, nose, and tail, are modified and redesigned to improve its hydrodynamic performance. A three-dimensional (3D) simulation is carried out using the computational fluid dynamics (CFD) method. To simulate turbulence, the kω shear stress transport (SST) model is employed, due to its good prediction capability at reasonable computational cost. Considering the effects of the length-to-diameter ratio (LTDR) and the nose and tail shapes on the hydrodynamic coefficients, it is concluded that a hull shape with bullet nose and sharp tail with LTDR equal to 7.14 performs better than the SUBOFF model. The final proposed model shows lower drag by about 14.9% at u = 1.5 m·s−1. Moreover, it produces 8 times more lift than the SUBOFF model at u = 6.1 m·s−1. These effects are due to the attachment of the fluid flow at the tail area of the hull, which weakens the wake region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

F :

Body force

D :

Diameter

y + :

Dimensionless wall distance

C D :

Drag coefficient

ρ :

Fluid density

g i :

Gravitational acceleration

δ ij :

Kronecker delta

L :

Length

LTDR:

Length-to-diameter ratio

C L :

Lift coefficient

L m :

Main body length

L n :

Nose length

C M :

Pitching moment coefficient

P :

Pressure

C P :

Pressure coefficient

Re :

Reynolds number

τ ij :

Reynolds stress tensor

ω :

Specific rate of dissipation

L t :

Tail length

k :

Turbulent kinetic energy

u :

Velocity

μ :

Viscosity

References

  1. Newman, P., Westwood, R., Westwood, J.: Market prospects for AUVs. Mar. Technol. Rep. 50, 1–15 (2007)

    Google Scholar 

  2. Wernli, R.L.: AUVs-the maturity of the technology. In: Oceans’ 99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No. 99CH37008), pp. 1–20 (1999)

  3. Joung, T., Sammut, K., He, F., et al.: A study on the design optimization of an AUV by using computational fluid dynamic analysis. In: The Nineteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2009)

  4. De Barros, E.A., Pascoal, A., De Sá, E.: Progress towards a method for predicting AUV derivatives. In: Proceedings of IFAC Manoeuvring Control Marine Crafts, pp. 1–12 (2006)

  5. Javaid, M.Y., Ovinis, M., Hashim, F.B., et al.: Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. Int. J. Nav. Arch. Ocean Eng. 9, 382–389 (2017)

    Article  Google Scholar 

  6. Stern, F., Yang, J., Wang, Z., et al.: Computational ship hydrodynamics: nowadays and way forward. Int. Shipbuild. Prog. 60, 93–105 (2013)

    Google Scholar 

  7. Lin, X., He, G., He, X., et al.: Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement. Acta Mech. Sin. 34, 446–451 (2018)

    Article  MathSciNet  Google Scholar 

  8. Lin, L.M., Zhong, X.F., Wu, Y.X.: Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history. Acta Mech. Sin. 34, 238–256 (2018)

    Article  Google Scholar 

  9. Fatahian, E., Nichkoohi, A.L., Fatahian, H.: Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil. Prog. Comput. Fluid Dyn. 19, 170–179 (2019)

    Article  Google Scholar 

  10. Gao, T., Wang, Y., Pang, Y., et al.: Hull shape optimization for autonomous underwater vehicles using CFD. Eng. Appl. Comput. Fluid Mech. 10, 599–607 (2016)

    Google Scholar 

  11. Willy, C.J.: Attitude control of an underwater vehicle subjected to waves. Diss. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution (1994)

  12. Milgram, J.H.: Strip theory for underwater vehicles in water of finite depth. J. Eng. Math. 58, 31–50 (2007)

    Article  MathSciNet  Google Scholar 

  13. Jagadeesh, P., Murali, K.: RANS predictions of free surface effects on axisymmetric underwater body. Eng. Appl. Comput. Fluid Mech. 4, 301–313 (2010)

    Google Scholar 

  14. Jagadeesh, P., Murali, K., Idichandy, V.G.: Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Eng. 36, 113–118 (2009)

    Article  Google Scholar 

  15. Stevenson, P., Furlong, M., Dormer, D.: AUV shapes-combining the practical and hydrodynamic considerations. Oceans 2007-Europe. IEEE (2007)

  16. Sarkar, T., Sayer, P.G., Fraser, S.M.: A study of autonomous underwater vehicle hull forms using computational fluid dynamics. Int. J. Numer. Methods Fluids 25, 1301–1313 (1997)

    Article  Google Scholar 

  17. Wei, Z., Yu, Q., Yang, S.: Analysis of the resistance performance for different types of AUVs based on CFD. Chin. J. Ship Res. 9, 28–37 (2014)

    Google Scholar 

  18. Mansoorzadeh, S., Javanmard, E.: An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods. J. Fluid Struct. 51, 161–171 (2014)

    Article  Google Scholar 

  19. Yamamoto, I.: Research on next autonomous underwater vehicle for longer distance cruising. IFAC-PapersOnLine 48, 173–176 (2015)

    Article  Google Scholar 

  20. Nouri, N.M., Zeinali, M., Jahangardy, Y.: AUV hull shape design based on desired pressure distribution. J. Mar. Sci. Technol. 21, 203–215 (2016)

    Article  Google Scholar 

  21. Wang, Y., Gao, T., Pang, Y., et al.: Investigation and optimization of appendage influence on the hydrodynamic performance of AUVs. J. Mar. Sci. Technol. 24, 297–305 (2019)

    Article  Google Scholar 

  22. Groves, N.C., Huang, T.T., Chang, M.S.: Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471). No. DTRC/SHD-1298-01. David Taylor Research Center Bethesda MD Ship Hydromechanics Dept (1989)

  23. Huang, T.T., Liu, H.L., Groves, N.C.: Experiments of the DARPA (Defense Advanced Research Projects Agency) Suboff Program. No. DTRC/SHD-1298-02. David Taylor Research Center Bethesda MD Ship Hydromechanics Dept (1989)

  24. Gao, T., Wang, Y., Pang, Y., et al.: A time efficient CFD approach for hydrodynamic coefficient determination and model simplification of submarine. Ocean Eng. 154, 16–26 (2018)

    Article  Google Scholar 

  25. Hayati, A.N., Hashemi, S.M., Shams, M.: A study on the behind-hull performance of marine propellers astern autonomous underwater vehicles at diverse angles of attack. Ocean Eng. 59, 152–163 (2013)

    Article  Google Scholar 

  26. Dantas, J.L.D., De Barros, E.A.: Numerical analysis of control surface effects on AUV manoeuvrability. Appl. Ocean Res. 42, 168–181 (2013)

    Article  Google Scholar 

  27. Wu, X., Wang, Y., Huang, C., et al.: An effective CFD approach for marine-vehicle maneuvering simulation based on the hybrid reference frames method. Ocean Eng. 109, 83–92 (2015)

    Article  Google Scholar 

  28. Shojaeefard, M.H., Khorampanahi, A., Mirzaei, M.: RANS study of Strouhal number effects on the stability derivatives of an autonomous underwater vehicle. J. Braz. Soc. Mech. Sci. 40, 124–137 (2018)

    Article  Google Scholar 

  29. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  30. Liu, H.L., Huang, T.T.: Summary of DARPA SUBOFF experimental program data. No. CRDKNSWC/HD-1298-11. Naval Surface Warfare Center Carderock Div Bethesda MD Hydrodynamics Directorate (1998)

  31. Sakthivel, R., Vengadesan, S., Bhattacharyya, S.K.: Application of non-linear ke turbulence model in flow simulation over underwater axisymmetric hull at higher angle of attack. J. Nav. Arch. Mar. Eng. 8, 149–163 (2011)

    Article  Google Scholar 

  32. Alin, N., Bensow, R.E., Fureby, C., et al.: Current capabilities of DES and LES for submarines at straight course. J. Ship Res. 54, 184–196 (2010)

    Google Scholar 

  33. Manshadi, M.D., Hejranfar, K., Farajollahi, A.H.: Effect of vortex generators on hydrodynamic behavior of an underwater axisymmetric hull at high angles of attack. J. Vis. 20, 559–579 (2017)

    Article  Google Scholar 

  34. Moonesun, M., Mahdian, A., Korol, Y.M., et al.: Optimum L/D for submarine shape. Indian J. Geo-Mar. Sci. 45, 38–43 (2016)

    Google Scholar 

  35. Singh, Y., Bhattacharyya, S.K., Idichandy, V.G.: CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. J. Ocean Eng. Sci. 2, 90–119 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Divsalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divsalar, K. Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach. Acta Mech. Sin. 36, 44–56 (2020). https://doi.org/10.1007/s10409-019-00913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00913-7

Keywords

Navigation