Skip to main content
Log in

Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Vertical-axis wind turbines (VAWTs) have been widely used in urban environments, which contain dust and experience strong turbulence. However, airfoils for VAWTs in urban environments have received considerably less research attention than those for horizontal-axis wind turbines (HAWTs). In this study, the sensitivity of a new VAWT airfoil developed at the Lanzhou University of Technology (LUT) to roughness was investigated via a wind tunnel experiment. The results show that the LUT airfoil is less sensitive to roughness at a roughness height of < 0.35 mm. Moreover, the drag bucket of the LUT airfoil decreases with increasing roughness height. Furthermore, the loads on the LUT airfoil during dynamic stall were studied at different turbulence intensities using a numerical method at a tip-speed ratio of 2. Before the stall, the turbulence intensity did not considerably affect the normal or tangential force coefficients of the LUT airfoil. However, after the stall, the normal force coefficient varied obviously at low turbulence intensity. Moreover, as the turbulence intensity increased, the normal and tangential force coefficients decreased rapidly, particularly in the downwind region of the VAWT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Raciti Castelli, M.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)

    Article  Google Scholar 

  2. Kc, A., Whale, J., Urmee, T.: Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131, 268–283 (2018)

    Article  Google Scholar 

  3. Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)

    Article  Google Scholar 

  4. Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)

    Article  Google Scholar 

  6. Wernert, P., Geissler, W., Raffel, M., Kompenhans, J.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)

    Article  Google Scholar 

  7. Marzabadi, F.R., Soltani, M.R.: Effect of leading-edge roughness on boundary layer transition of an oscillating airfoil. Sci. Iran 20, 508–515 (2013)

    Google Scholar 

  8. Migliore, P.: Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 7, 291–292 (1983)

    Article  Google Scholar 

  9. Ferreira, C.J.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007)

    Article  Google Scholar 

  10. Ali, S., Lee, S.-M., Jang, C.-M.: Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine. Energy Convers. Manag. 171, 1322–1338 (2018)

    Article  Google Scholar 

  11. Islam, M., Ting, D.S.-K., Fartaj, A.: Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31, 165–196 (2007)

    Article  Google Scholar 

  12. Islam, M., Fartaj, A., Carriveau, R.: Design analysis of a small-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 30, 179–192 (2011)

    Article  Google Scholar 

  13. Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35, 412–422 (2010)

    Article  Google Scholar 

  14. Carrigan, T.J., Dennis, B.H., Han, Z.X., Wang, B.P.: Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 1–16 (2012)

    Article  Google Scholar 

  15. Subramanian, A., Yogesh, S.A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., Velamati, R.K.: Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133, 179–190 (2017)

    Article  Google Scholar 

  16. Han, W., Kim, J., Kim, B.: Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 115, 817–823 (2018)

    Article  Google Scholar 

  17. Priegue, L., Stoesser, T.: The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 17, 136–146 (2017)

    Article  Google Scholar 

  18. Walker, J.M., Flack, K.A., Lust, E.E., Schultz, M.P., Luznik, L.: Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy 66, 257–267 (2014)

    Article  Google Scholar 

  19. Kerho, M.F., Bragg, M.B.: Airfoil boundary-layer development and transition with large leading-edge roughness. AIAA J. 35, 75–84 (1997)

    Article  Google Scholar 

  20. Braslow, B.A.L., Knox, E.C., Field, L.: simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5. Technical Report Archive & Image Library (1958)

  21. Soltani, M.R., Birjandi, A.H., Seddighi Moorani, M.: Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran 18, 349–357 (2011)

    Article  Google Scholar 

  22. Timmer, W.A., Schaffarczyk, A.P.: The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 7, 295–307 (2004)

    Article  Google Scholar 

  23. Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrog. Energy 42, 18252–18262 (2017)

    Article  Google Scholar 

  24. Freudenreich, K., Kaiser, K., Schaffarczyk, A.P., Winkler, H., Stahl, B.: Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28, 529–546 (2005)

    Article  Google Scholar 

  25. Rooij, R.P., Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. J. Sol. Energy Eng. 125, 468–478 (2003)

    Article  Google Scholar 

  26. Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)

    Article  MathSciNet  Google Scholar 

  27. Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90, 689–707 (2002)

    Article  Google Scholar 

  28. Molina, A.C., Bartoli, G., De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 199, 3176–3181 (2017)

    Article  Google Scholar 

  29. Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K.: Performance of a vertical axis wind turbine in grid generated turbulence. Sustain. Energy Technol. Assess. 11, 178–185 (2015)

    Google Scholar 

  30. Peng, H.Y., Lam, H.F.: Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109, 557–568 (2016)

    Article  Google Scholar 

  31. Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015)

    Article  Google Scholar 

  32. Qiao, Z.D., Song, W.P., Gao, Y.W.: Design and experiment of the NPU-WA airfoil family for wind turbines. ACTA Aerodyn. Sin. 30, 260–265 (2012)

    Google Scholar 

  33. Meng, X., Hu, H., Yan, X., Liu, F., Luo, S.: Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerosp. Sci. Technol. 72, 123–133 (2018)

    Article  Google Scholar 

  34. Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., Zhong, W., Wang, T.: Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Appl. Sci. 8, 2266 (2018)

    Article  Google Scholar 

  35. Somers, D.M.: Design and experimental results for the s814 airfoil, p. 272. National Renewable Energy Lab, Golden (1997)

    Google Scholar 

  36. Kong, L.: Fluid Mechanics. Higher Education Press, Beijing (2011)

    Google Scholar 

  37. Islam, M.: Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils. Dissertation, University of Windsor (2008)

  38. Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)

    Article  Google Scholar 

  39. Somers, D.M.: Design and experimental results for the S825 airfoil period of performance : 1998–1999 design and experimental results for the S825 Airfoil. Technical Report NREL/SR-500-36346, National Renewable Energy Laboratory: Golden, CO, USA (2005)

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of GANSU (grant 1508RJYA098), National Natural Science Foundation of China (grants 51766009, 51761135012, 11872248), and National Basic Research Program of China (grant 2014CB046201). The authors also thank the people who provided many good suggestions for this paper, and Northwestern Polytechnical University for providing the experimental instruments and wind tunnel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Li or Deshun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, Y., Yang, C. et al. Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance. Acta Mech. Sin. 35, 1178–1190 (2019). https://doi.org/10.1007/s10409-019-00898-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00898-3

Keywords

Navigation