Skip to main content
Log in

ICM method for topology optimization of multimaterial continuum structure with displacement constraint

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new topology optimization method is formulated for lightweight design of multimaterial structures, using the independent continuous mapping (ICM) method to minimize the weight with a prescribed nodal displacement constraint. Two types of independent topological variable are used to identify the presence of elements and select the material for each phase, to realize the interpolations of the element stiffness matrix and total weight. Furthermore, an explicit expression for the optimized formulation is derived, using approximations of the displacement and weight given by first- and second-order Taylor expansions. The optimization problem is thereby transformed into a standard quadratic programming problem that can be solved using a sequential quadratic programming approach. The feasibility and effectiveness of the proposed multimaterial topology optimization method are demonstrated by determining the best load transfer path for four numerical examples. The results reveal that the topologically optimized configuration of the multimaterial structure varies with the material properties, load conditions, and constraint. Firstly, the weight of the optimized multimaterial structure is found to be lower than that composed of a single material. Secondly, under the precondition of a displacement constraint, the weight of the topologically optimized multimaterial structure decreases as the displacement constraint value is increased. Finally, the topologically optimized multimaterial structures differ depending on the elastic modulus of the materials. Besides, the established optimization formulation is more reliable and suitable for use in practical engineering applications with structural performance parameters as constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, M., Rozvany, G.I.N.: The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  4. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  MATH  Google Scholar 

  5. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  6. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, X., Zhang, W.S., Zhong, W., et al.: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  9. Guo, X., Zhang, W.S., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)

    Article  MathSciNet  Google Scholar 

  10. Norato, J.A., Bendsøe, M.P., Haber, R.B., et al.: A topological derivative method for topology optimization. Struct. Multidiscip. Optim. 33, 375–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sui, Y.K., Peng, X.R.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta. Mech. Sin. 22, 68–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thomsen, J.: Topology optimization of structures composed of one or two materials. Struct. Optim. 5, 108–115 (1992)

    Article  Google Scholar 

  13. Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997)

    Article  MathSciNet  Google Scholar 

  14. Ruiz, D., Sigmund, O.: Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct. Multidiscip. Optim. 57, 71–82 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sun, S.P., Zhang, W.H.: Multiple objective topology optimal design of multiphase microstructures. Chin. J. Theor. Appl. Mech. 38, 633–638 (2006) (in Chinese)

    Google Scholar 

  16. Gibiansky, L.V., Sigmund, O.: Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48, 461–498 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, T., Zhang, W.H.: A mass constraint formulation for structural topology optimization with multiphase materials. Int. J. Numer. Methods Eng. 88, 774–796 (2011)

    Article  MATH  Google Scholar 

  18. Mei, Y.L., Wang, X.M.: A level set method for structural topology optimization with multi-constraints and multi-materials. Acta. Mech. Sin. 20, 507–518 (2004)

    Article  MathSciNet  Google Scholar 

  19. Li, H., Luo, Z., Walker, P.: Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput. Methods Appl. Mech. Eng. 328, 340–364 (2018)

    Article  MathSciNet  Google Scholar 

  20. Wu, J.L., Luo, Z., Zhang, N.: Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Comput. Methods Appl. Mech. Eng. 319, 414–441 (2017)

    Article  MathSciNet  Google Scholar 

  21. Bourdin, B., Chambolle, A.: The phase-field method in optimal design. Solid Mech. Appl. 137, 207–251 (2006)

    Google Scholar 

  22. Wang, M.Y., Zhou, S.W.: Synthesis of shape and topology of multi-material structures with a phase-field method. J. Comput. Aided Mater. Des. 11, 117–138 (2004)

    Article  Google Scholar 

  23. Wang, M.Y., Zhou, S.W.: Phase field: a variational method for structural topology optimization. Comput. Model. Eng. Sci. 6, 469–496 (2004)

    MathSciNet  Google Scholar 

  24. Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62, 2009–2027 (2005)

    Article  MATH  Google Scholar 

  25. Blasques, J.P., Stolpe, M.: Multi-material topology optimization of laminated composite beam cross sections. Compos. Struct. 94, 3278–3289 (2012)

    Article  Google Scholar 

  26. Blasques, J.P.: Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos. Struct. 111, 45–55 (2014)

    Article  Google Scholar 

  27. Huang, X., Xie, Y.M., Jia, B., et al.: Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct. Multidiscip. Optim. 46, 385–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Long, K., Wang, X., Gu, X.G., et al.: Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously. Acta. Mech. Sin. 34, 315–326 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Long, K., Wang, X., Gu, X.G.: Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm. Eng. Optim. 50(12), 2091–2107 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yin, L., Ananthasuresh, G.K.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23, 49–62 (2001)

    Article  Google Scholar 

  31. Zuo, W.J., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55, 477–491 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ye, H.L., Wang, W.W., Chen, N., et al.: Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables. Acta. Mech. Sin. 33, 899–911 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ye, H.L., Wang, W.W., Chen, N., et al.: Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta. Mech. Sin. 32, 649–658 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sui, Y.K., Ye, H.L.: Continuum Topology Optimization Methods ICM. Science Press, Beijing (2013) (in Chinese)

    Google Scholar 

  35. Sui, Y.K., Peng, X.R.: The improvement for the ICM method of structural topology optimization. Chin. J. Theor. Appl. Mech 37, 190–198 (2005) (in Chinese)

    Google Scholar 

  36. Sui, Y.K., Peng, X.R.: A dual explicit model based DP-EM method for solving a class of separable convex programming. Chin. J. Theor. Appl. Mech. 49, 1135–1144 (2017) (in Chinese)

    Google Scholar 

  37. Long, K., Wang, X., et al.: Local optimum in multi-material topology optimization and solution by reciprocal variables. Struct. Multidisp. Optim. 57, 1283–1295 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11072009 and 11872080) and Beijing Education Committee Development Project (Grant SQKM201610005001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ling Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, HL., Dai, ZJ., Wang, WW. et al. ICM method for topology optimization of multimaterial continuum structure with displacement constraint. Acta Mech. Sin. 35, 552–562 (2019). https://doi.org/10.1007/s10409-018-0827-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0827-3

Keywords

Navigation