Skip to main content
Log in

Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress triaxiality and shear stress on void growth and coalescence are considered. Finite-element analyses of two different kinds of steel, viz. ASTM A992 and AISI 1045, were carried out to monitor the history of stress and strain states and study the methodology for determining fracture initiation. Both the new model and void growth model (VGM) were calibrated for both kinds of steel and their accuracy for predicting fracture initiation evaluated. The results indicated that both models offer good accuracy for predicting fracture of A992 steel. However, use of the VGM leads to a significant deviation for 1045 steel, while the new model presents good performance for predicting fracture over a wide range of stress triaxiality while capturing the effect of shear stress on fracture initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)

    Article  Google Scholar 

  2. McClintock, F.A.: A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 35, 363–371 (1968)

    Article  Google Scholar 

  3. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  4. Weck, A., Wilkinson, D.S., Maire, E., et al.: Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Mater. 56, 2919–2928 (2008)

    Article  Google Scholar 

  5. Barsoum, I., Faleskog, J.: Rupture mechanisms in combined tension and shear-experiments. Int. J. Solids Struct. 44, 1768–1786 (2007)

    Article  MATH  Google Scholar 

  6. Bai, Y., Wierzbicki, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)

    Article  MATH  Google Scholar 

  7. Li, H., Fu, M.W., Lu, J., et al.: Ductile fracture: experiments and computations. Int. J. Plast. 27, 147–180 (2011)

    Article  Google Scholar 

  8. Kiran, R., Khandelwal, K.: Experimental studies and models for ductile fracture in ASTM A992 steels at high triaxiality. J. Struct. Eng. 140, 04013044 (2013)

    Article  Google Scholar 

  9. Dos Santos, F.F., Ruggieri, C.: Micromechanics modelling of ductile fracture in tensile specimens using computational cells. Fatigue Fract. Eng. Mater. Struct. 26, 173–181 (2003)

    Article  Google Scholar 

  10. Pardoen, T., Hutchinson, J.W.: An extended model for void growth and coalescence. J. Mech. Phys. Solids 48, 2467–2512 (2000)

    Article  MATH  Google Scholar 

  11. Ristinmaa, M.: Void growth in cyclic loaded porous plastic solid. Mech. Mater. 26, 227–245 (1997)

    Article  Google Scholar 

  12. Kiran, R., Khandelwal, K.: A coupled microvoid elongation and dilation based ductile fracture model for structural steels. Eng. Fract. Mech. 145, 15–42 (2015)

    Article  Google Scholar 

  13. Barsoum, I., Faleskog, J.: Rupture mechanisms in combined tension and shear-micromechanics. Int. J. Solids Struct. 44, 5481–5498 (2007)

    Article  MATH  Google Scholar 

  14. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  15. Freudenthal, A.M.: The Inelastic Behavior of Solids. Wiley, New York (1950)

    Google Scholar 

  16. Cockcroft, M.G., Latham, D.J.: Ductility and workability of metals. J. Inst. Met. 96, 33–39 (1968)

    Google Scholar 

  17. Wierzbicki, T., Xue, L.: On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Technical Report. (136) (2005)

  18. Zhang, Z.L., Thaulow, C., Ødegård, J.: A complete Gurson model approach for ductile fracture. Eng. Fract. Mech. 67, 155–168 (2000)

    Article  Google Scholar 

  19. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  20. Chaboche, J.L.: Continuum damage mechanics: part II—Damage growth, crack initiation, and crack growth. J. Appl. Mech. 55, 65–72 (1988)

    Article  Google Scholar 

  21. Brünig, M., Chyra, O., Albrecht, D., et al.: A ductile damage criterion at various stress triaxialities. Int. J. Plast. 24, 1731–1755 (2008)

    Article  MATH  Google Scholar 

  22. Zhuang, X., Ma, Y., Zhao, Z.: Fracture prediction under nonproportional loadings by considering combined hardening and fatigue-rule-based damage accumulation. Int. J. Mech. Sci. 150, 51–65 (2019)

    Article  Google Scholar 

  23. Chi, W.M., Kanvinde, A.M., Deierlein, G.G.: Prediction of ductile fracture in steel connections using SMCS criterion. J. Struct. Eng. 132, 171–181 (2006)

    Article  Google Scholar 

  24. Kanvinde, A.M., Deierlein, G.G.: The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels. J. Struct. Eng. 132, 1907–1918 (2006)

    Article  Google Scholar 

  25. Kanvinde, A.M., Deierlein, G.G.: Finite-element simulation of ductile fracture in reduced section pull-plates using micromechanics-based fracture models. J. Struct. Eng. 133, 656–664 (2007)

    Article  Google Scholar 

  26. Mackenzie, A.C., Hancock, J.W., Brown, D.K.: On the influence of state of stress on ductile failure initiation in high strength steels. Eng. Fract. Mech. 9, 167IN13169–168IN14188 (1977)

    Article  Google Scholar 

  27. Marini, B., Mudry, F., Pineau, A.: Ductile rupture of A508 steel under nonradial loading. Eng. Fract. Mech. 22, 375–386 (1985)

    Article  Google Scholar 

  28. Panontin, T.L., Sheppard, S.D.: The relationship between constraint and ductile fracture initiation as defined by micromechanical analyses. In: Reuter, W.G., Underwood, J.H., Newman, Jr., J.C. (eds.) Fracture Mechanics. ASTM STP 1256, vol. 26, pp. 54–85 (1995)

  29. Bai, Y.: Effect of loading history in necking and fracture. [Ph.D Thesis], Massachusetts Institute of Technology, Cambridge, MA, USA (2008)

  30. Nahshon, K., Hutchinson, J.W.: Modification of the Gurson model for shear failure. Eur. J. Mech. A Solids 27, 1–17 (2008)

    Article  MATH  Google Scholar 

  31. Kim, J., Gao, X., Srivatsan, T.S.: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng. Fract. Mech. 71, 379–400 (2004)

    Article  Google Scholar 

  32. Gao, X., Kim, J.: Modeling of ductile fracture: significance of void coalescence. Int. J. Solids Struct. 43, 6277–6293 (2006)

    Article  MATH  Google Scholar 

  33. Xue, L.: Ductile fracture modeling-theory, experimental investigation and numerical verification. [Ph.D Thesis], Massachusetts Institute of Technology, Cambridge, MA, USA (2007)

  34. Bai, Y., Wierzbicki, T.: Application of extended Mohr–Coulomb criterion to ductile fracture. Int. J. Fract. 161, 1–20 (2010)

    Article  MATH  Google Scholar 

  35. Xue, L.: Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech. 75, 3343–3366 (2008)

    Article  Google Scholar 

  36. Lou, Y., Huh, H., Lim, S., et al.: New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int. J. Solids Struct. 49, 3605–3615 (2012)

    Article  Google Scholar 

  37. Lou, Y., Yoon, J.W., Huh, H.: Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int. J. Plast. 54, 56–80 (2014)

    Article  Google Scholar 

  38. Lou, Y., Chen, L., Clausmeyer, T., et al.: Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int. J. Solids Struct. 112, 169–184 (2017)

    Article  Google Scholar 

  39. Hu, Q., Li, X., Han, X., et al.: A new shear and tension based ductile fracture criterion: modeling and validation. Eur. J. Mech. A Solids 66, 370–386 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mu, L., Zang, Y., Wang, Y., et al.: Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int. J. Mech. Sci. 141, 408–423 (2018)

    Article  Google Scholar 

  41. Zhu, Y., Engelhardt, M.D.: Prediction of ductile fracture for metal alloys using a shear modified void growth model. Eng. Fract. Mech. 190, 491–513 (2018)

    Article  Google Scholar 

  42. Tvergaard, V.: On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982)

    Google Scholar 

  43. Noell, P.J., Carroll, J.D., Boyce, B.L.: The mechanisms of ductile rupture. Acta Mater. 161, 83–98 (2018)

    Article  Google Scholar 

  44. Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    Article  Google Scholar 

  45. Zhu, Y., Engelhardt, M.D., Kiran, R.: Combined effects of triaxiality, Lode parameter and shear stress on void growth and coalescence. Eng. Fract. Mech. 199, 410–437 (2018)

    Article  Google Scholar 

  46. Bai, Y., Wierzbicki, T.: A comparative study of three groups of ductile fracture loci in the 3D space. Eng. Fract. Mech. 135, 147–167 (2015)

    Article  Google Scholar 

  47. Arasaratnam, P., Sivakumaran, K.S., Tait, M.J.: True stress-true strain models for structural steel elements. ISRN Civ. Eng. 2011, 656401 (2011)

    Google Scholar 

  48. Zhu, Y., Engelhardt, M.D.: A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity. Eur. J. Mech. A Solids 71, 16–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Y.Z. Zhu and M.D. Engelhardt thank the funding support of the National Science Foundation (Grant 1344592). Z.F. Pan gratefully acknowledges the support of the National Natural Science Foundation of China (Grant 51778462) and the National Key Research and Development Plan (Grants 2017YFC1500700 and 2016YFC0701400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuanfeng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Engelhardt, M.D. & Pan, Z. Simulation of ductile fracture initiation in steels using a stress triaxiality–shear stress coupled model. Acta Mech. Sin. 35, 600–614 (2019). https://doi.org/10.1007/s10409-018-0825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0825-5

Keywords

Navigation