Skip to main content
Log in

Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress–strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu, J., Wei, Y.: Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J. Mech. Phys. Solids 61, 1421–1432 (2013)

    Article  MathSciNet  Google Scholar 

  2. Chen, Y., Zhang, Y., Cai, K., et al.: Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures. Carbon 117, 399–410 (2017)

    Article  Google Scholar 

  3. Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    Article  Google Scholar 

  4. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  5. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  6. Stankovich, S., Dikin, D.A.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  7. Wu, S., He, Q., Tan, C., et al.: Graphene—based electrochemical sensors. Small 9, 1160–1172 (2013)

    Article  Google Scholar 

  8. Tan, X., Wu, J., Zhang, K., et al.: Nanoindentation models and Young’s modulus of monolayer graphene: a molecular dynamics study. Appl. Phys. Lett. 102, 109 (2013)

    Google Scholar 

  9. Min, K., Aluru, N.R.: Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 98, 013113 (2011)

  10. Yeh, N.C., Hsu, C.C., Teague, M.L., et al.: Nanoscale strain engineering of graphene and graphene-based devices. Acta Mech. Sin. 32, 497–509 (2016)

    Article  Google Scholar 

  11. Xu, X., Rong, D., Lim, C.W., et al.: An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets. Acta Mech. Sin. 33, 912–925 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, D.T., Le, M.Q., Bui, T.L., et al.: Atomistic simulation of free transverse vibration of graphene, hexagonal SiC, and BN nanosheets. Acta Mech. Sin. 33, 132–147 (2017)

    Article  Google Scholar 

  13. Chang, T.: Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent. Appl. Phys. Lett. 90, 787 (2007)

    Google Scholar 

  14. Yi, L., Chang, T.: Loading direction dependent mechanical behavior of graphene under shear strain. Sci. China Phys. Mech. 55, 1083–1087 (2012)

    Article  Google Scholar 

  15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  16. Zhang, B., Mei, L., Xiao, H.: Nanofracture in graphene under complex mechanical stresses. Appl. Phys. Lett. 101, 121915 (2012)

    Article  Google Scholar 

  17. Tabarraei, A., Wang, X., Jia, D.: Effects of hydrogen adsorption on the fracture properties of graphene. Comput. Mater. Sci. 121, 151–158 (2016)

    Article  Google Scholar 

  18. Belytschko, T., Xiao, S.P., Schatz, G.C., et al.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  19. Grantab, R., Shenoy, V.B., Ruoff, R.S.: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010)

    Article  Google Scholar 

  20. Synder, R.G., Schachtschneider, J.H.: A valence force field for saturated hydrocarbons. Spectrochim. Acta. 21, 169–195 (1965)

    Article  Google Scholar 

  21. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  22. Wu, J., Nagao, S., He, J., et al.: Nanohinge—induced plasticity of helical carbon nanotubes. Small 9, 3561–3566 (2013)

    Article  Google Scholar 

  23. Zhao, J., Kou, L., Jiang, J.W., et al.: Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures. Nanotechnology 25, 295701 (2014)

    Article  Google Scholar 

  24. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. Engineering Societies Monographs, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  25. Pei, Q.X., Zhang, Y.W., Shenoy, V.B.: A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48, 898–904 (2010)

    Article  Google Scholar 

  26. Yang, Z., Zhao, J., Wei, N.: Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Appl. Phys. Lett. 107, 023107 (2015)

    Article  Google Scholar 

  27. Gao, W., Huang, R.: Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 66, 42–58 (2014)

    Article  MathSciNet  Google Scholar 

  28. Wong, W., Pellegrino, S.: Wrinkled membranes I: experiments. J. Mech. Mater. Struct. 1, 3–25 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant 11572140), the Programs of Innovation and Entrepreneurship of Jiangsu Province, Primary Research & Development Plan of Jiangsu Province, Science and Technology Plan Project of Wuxi, the Fundamental Research Funds for the Central Universities (Grants JUSRP11529, JUSRP115A10, JG2015059), the research and practice project of teaching reform of graduate education in Jiangsu (Grant JGLX16_048), the Undergraduate Innovation Training Program of Jiangnan University of China (Grant 2015151Y), the Undergraduate Innovation and Entrepreneurship Training Program of China (Grant 201610295057), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (Grant MCMS-0416G01), the “Project of Jiangsu provincial Six Talent Peaks” in Jiangsu Province and “Thousand Youth Talents Plan.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Dong, S., Yu, P. et al. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets. Acta Mech. Sin. 34, 542–548 (2018). https://doi.org/10.1007/s10409-017-0736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0736-x

Keywords

Navigation