Skip to main content
Log in

Generalized mixed finite element method for 3D elasticity problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Without applying any stable element techniques in the mixed methods, two simple generalized mixed element (GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner (H–R) variational principle. The main features of the GME formulations are that the common \(C_{0}\)-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Tian, S.Z., Pian, T.H.: Variational Principles with Multi-variables and Finite Elements with Multi-variables. Science Press, Beijing (2011). (in Chinese)

    Google Scholar 

  2. Hoa, S.V., Wei, F.: Hybrid Finite Element Method for Stress Analysis of Laminated Composites. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  3. Herrmann, L.R.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 98, 13–26 (1967)

    Google Scholar 

  4. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Rev. Fr. Autom. Inf. Rech. Opér. Anal. Numér. 8, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Reddy, J.N., Oden, J.T.: Mathematical theory of mixed finite element approximations. Quart. Appl. Math 33, 255–280 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Oden, J.T., Reddy, J.N.: On mixed finite element approximations. SIAM J. Numer. Anal. 13, 393–404 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  8. Atluri, S.N., Gallagher, R.H., Zienkiewicz, O.C.: Hybrid and Mixed Finite Element Methods. Wiley, New York (1983)

    Google Scholar 

  9. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  10. Morley, M.E.: A family of mixed finite elements for linear elasticity. Numer. Math. 55, 633–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  12. Belytschko, T., Liu, W.K., Moran, B., et al.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2013)

    MATH  Google Scholar 

  13. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, London (1997)

    MATH  Google Scholar 

  14. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics. Butterworth, London (2000)

    MATH  Google Scholar 

  15. Arnold, D.N.: Differential complexes and numerical stability. Preprint. arXiv:math/0212391 (2002)

  16. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Adams, S., Cockburn, B.: A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25, 515–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arnold, D.N., Falk, R., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76, 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77, 1229–1251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sinwel, A.: A new family of mixed finite elements for elasticity. [Ph.D. Thesis], Johannes Kepler University, Austria (2009)

  21. Qiu, W., Demkowicz, L.: Variable order mixed \(h\)-finite element method for linear elasticity with weakly imposed symmetry. II. Affine and curvilinear elements in 2D. Mathematics 11, 510–539 (2010)

  22. Gopalakrishnan, J., Guzm, J.N.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49, 1504–1520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, W.: Mixed variable order \(h\)-finite element method for linear elasticity with weakly imposed symmetry. Curvilinear elements in 2D. Comput. Methods Appl. Math. 11, 510–539 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Hu, J., Man, H.G., Zhang, S.G.: The simplest mixed finite element method for linear elasticity in the symmetric formulation on \(n\)-rectangular grids. Comput. Math. Appl. 71, 1317–1336 (2013)

    Article  MathSciNet  Google Scholar 

  25. Liu, Z.D.: Basis of Mixed Finite Element Methods and Its Application. Science Press, Beijing (2006). (in Chinese)

    Google Scholar 

  26. Arnold, D.N.: Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Eng. 82, 281–300 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29, 90–95 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chien, W.Z.: Method of high-order lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals. Appl. Math. Mech. 4, 143–157 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Felippa, C.A.: Parameterized multifid variational principles in elasticity: I. Mixed functionals. Commun. Appl. Numer. Methods 5, 79–88 (1989)

    Article  MathSciNet  Google Scholar 

  30. Felippa, C.A.: Parametrized multifid variational principles in elasticity: II. Hybrid functionals and the free formulation. Commun. Appl. Numer. Methods 5, 89–98 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhong, W.X.: Force, Work, Energy and Symplectic Mathematics. Dalian University of Technology Press, Dalian (2007). (in Chinese)

    Google Scholar 

  32. Chen, W.J.: A high preccision eight-node hexahedron element. Chin. J. Theor. Appl. Mech. 10, 1211–1219 (1976)

    Google Scholar 

  33. Taylor, R.L., Beresford, P.J., Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Methods Eng. 10, 1211–1219 (1976)

    Article  MATH  Google Scholar 

  34. Fan, J.R.: Exact Theory of Laminated Thick Plates and Shells. Science Press, Beijing (1996). (in Chinese)

    Google Scholar 

  35. Cheung, Y.K., Chen, W.J.: Isoparametric hybrid hexahedral elements for 3-D stress analysis. Int. J. Numer. Methods Eng. 26, 677–693 (1988)

    Article  MATH  Google Scholar 

  36. Cook, R.D.: A plane hybrid element with rotational DOF and adjustable stiffness. Int. J. Numer. Methods Eng. 24, 1499–1508 (1987)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11502286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Qing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, G., Mao, J. & Liu, Y. Generalized mixed finite element method for 3D elasticity problems. Acta Mech. Sin. 34, 371–380 (2018). https://doi.org/10.1007/s10409-017-0690-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0690-7

Keywords

Navigation