Skip to main content
Log in

Dynamics of cavitation–structure interaction

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cavitation–structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation–structure interaction. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation–structure interaction, (2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations, with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system, (3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation–structure interaction mechanism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\sigma \) :

Local cavitation number

\(C_{\mathrm{dest}}\), \(C_{\mathrm{prod}}\) :

Constant rate for vaporization and condensation

\(C_{h}\) :

Bending damping coefficient

\(C_{\theta }\) :

Torsional damping coefficient

\(C_\mathrm{l}\) :

Lift coefficient

\(C_\mathrm{d}\) :

Drag coefficient

\(C_\mathrm{m}\) :

Moment coefficient

c :

Chord length of hydrofoil

Cp :

Pressure coefficient

D :

Drag

f :

Frequency

h :

Bending deformation

\(I_{\theta }\) :

Moment of inertia

\(K_{h}\), \(K_{\theta }\) :

Structural stiffness values for bending and twisting motion

k :

Turbulent kinetic energy

L :

Cavity length

\(L_{\mathrm{ref}}\) :

Reference length

\(L_{f}\) :

Lift

M :

Moment

m :

mass of structure

\(m^{+}\), \(m^{-}\) :

Source and sink terms in the cavitation model

p :

Pressure

\(p_{\infty }\) :

Reference static pressure

R :

Bubble diameter

Re :

Reynolds number

\(S_{\theta }\) :

Static imbalance

Fr :

Froude number

s :

Span of hydrofoil

t :

Local time

\(t_{\infty }\) :

Reference time scale, \(t_{\infty }=L/U_{\infty }\)

\(T_{\mathrm{ref}}\) :

Reference periodic time

\(U_{\infty }\) :

Reference velocity

\(V_{\mathrm{v},n}\) :

Normal component of the vapor velocity moving away from the interface

\(V_{\mathrm{I},n}\) :

Normal interfacial velocity

\(\omega z\) :

z-component of the vorticity

x :

Space variable

\(\delta {y}\) :

Maximum of vibration amplitude

\(\alpha \) :

Angle of attack

\(\alpha _{\mathrm{l}}\) :

Liquid volume fraction

\(\alpha _{\mathrm{v}}\) :

Vapor mass fraction

\(\rho \) :

Density

\(\theta \) :

Twist deformation

\(\mu \) :

Dynamic viscosity

\(\mu _T /\mu _{\mathrm{L}_{|{\mathrm{inlet}}}} \) :

Eddy-to-laminar viscosity ratio at the inlet

\(\varepsilon \) :

Turbulent dissipation rate

\(\lambda \) :

Filter size in filter-based model

i, j :

Component

l:

Liquid

v:

Vapor

L:

Laminar

m:

Mixture property

T:

Turbulent

References

  1. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering and Sciences Series, vol. 44. Oxford University Press, Oxford (1995)

    Google Scholar 

  2. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw Hill, New York (1970)

    Google Scholar 

  3. Ji, B., Wang, J., Luo, X., et al.: Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J. Mech. Sci. Technol. 30, 2507–2514 (2016)

    Article  Google Scholar 

  4. Wang, Y., Wu, X., Huang, C., et al.: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile. Int. J. Multiph. Flow 85, 48–56 (2016)

    Article  Google Scholar 

  5. Chen, Y., Chen, X., Li, J., et al.: Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean Eng. 129, 1–19 (2017)

    Article  Google Scholar 

  6. Rood, E.P.: Review-mechanisms of cavitation inception. J. Fluids Eng. 113, 163–175 (1991)

    Article  Google Scholar 

  7. Kawanami, Y., Kato, H., Yamauchi, H., et al.: Mechanism and control of cloud cavitations. ASME J. Fluids Eng. 119, 788–794 (1997)

    Article  Google Scholar 

  8. Laberteaux, K.R., Ceccio, S.L.: Partial cavity flows. Part 1: Cavities forming on models without spanwise variation. ASME J. Fluid Mech. 431, 1–41 (2002)

    MATH  Google Scholar 

  9. Delange, D.F., Debruin, G.J.: Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 58, 91–114 (1997)

    Article  Google Scholar 

  10. Kubota, A., Kato, H., Yamaguchi, H., et al.: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. ASME J. Fluids Eng. 111, 204–210 (1989)

    Article  Google Scholar 

  11. Callenaere, M., Franc, J.P., Michel, J.M., et al.: The cavitation instability induced by the development of a re-entrant jet. ASME J. Fluid Mech. 444, 233–256 (2001)

    MATH  Google Scholar 

  12. Kawakami, D.T., Fuji, A., Tsujimoto, Y., et al.: An assessment of the influence of cavitation instabilities. J. Fluids Eng. 130, 1–8 (2008)

    Article  Google Scholar 

  13. Li, C.Y., Ceccio, S.L.: Interaction of single travelling bubbles with the boundary layer and attached cavitation. J. Fluid Mech. 322, 329–353 (1996)

    Article  Google Scholar 

  14. Arndt, R.E.A., Song, C.C.S.: Instability of partial cavitation: a numerical/experimental approach. In: Proceedings of Twenty-Third Symposium on Naval Hydrodynamics, Valde Reuil, France (2000)

  15. Li, X., Wang, G., Yu, Z., et al.: Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta. Mech. Sin. 25, 161–172 (2009)

    Article  MATH  Google Scholar 

  16. Ausoni, P., Farhat, M., Escaler, X., et al.: Cavitation influence on von Karman vortex shedding and induced hydrofoil vibrations. ASME J. Fluid Eng. 129, 966–973 (2007)

    Article  Google Scholar 

  17. Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)

    Article  MATH  Google Scholar 

  18. Dang, J., Kuiper, G.: Re-entrant jet modeling of partial cavity flow on three dimensional hydrofoils. ASME J. Fluids Eng. 121, 781–787 (1999)

    Article  Google Scholar 

  19. Dang, J.: Numerical simulation of unsteady partial cavity flows. [Ph.D. Thesis], Technical University of Delft, Netherlands (2000)

  20. Foeth, E.J.: The structure of three-dimensional sheet cavitation. [Ph.D. Thesis], Delft University of Technology, Delft, Netherlands (2008)

  21. Foeth, E.J., Van Terwisga, T., Van Doone, C.: On the collapse structure of an attached cavity on a three-dimensional hydrofoil. ASME J. Fluids Eng. 130, 071303 (2008)

    Article  Google Scholar 

  22. Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Trans. 53, 513–525 (2010)

    Article  MATH  Google Scholar 

  23. Leroux, J.-B., Astolfi, J.A., Billard, J.Y.: An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94–101 (2004)

    Article  Google Scholar 

  24. Peng, X.X., Ji, B., Cao, Y.T., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)

    Article  Google Scholar 

  25. Senocak, I., Shyy, W.: Evaluation of cavitation models for Navier–Stokes computations. In: Proceedings of FEDSM’02, ASME 2002 Fluids Engineering Division Summer Meeting Montreal, Quebec, Canada (2002)

  26. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-1: Model development and steady-state computations. Int. J. Numer. Methods Fluids 44, 975–995 (2004)

    Article  MATH  Google Scholar 

  27. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part-2: Time-dependent computations. Int. J. Numer. Methods Fluids 44, 997–1016 (2004)

    Article  MATH  Google Scholar 

  28. Kim, S., Brewton, S.: A multiphase approach to turbulent cavitating flows. In: Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul, Korea (2008)

  29. Zhao, Y., Wang, G., Huang, B.: A cavitation model for computations of unsteady cavitating flows. Acta. Mech. Sin. 32, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, C., Wang, G., Chen, G., et al.: A modified PANS model for computations of unsteady turbulence for cavitating flows. Sci. China Phys. Mech. Astron. 57, 1967–1976 (2014)

    Article  Google Scholar 

  31. Chen, Y., Heister, S.D.: Modeling hydrodynamic non-equilibrium in cavitating flows. ASME J. Fluids Eng. 118, 172–178 (1996)

    Article  Google Scholar 

  32. Kubota, A., Kato, H., Yamaguchi, H.: A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. ASME J. Fluid Mech. 240, 59–96 (1992)

    Article  Google Scholar 

  33. Kunz, R.F., Boger, D.A., Stinebring, D.R., et al.: A preconditioned Navier–Stokes method for two phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)

    Article  MATH  Google Scholar 

  34. Singhal, A.K., Athavale, M.M., Li, H., et al.: Mathematical basis and validation of the full cavitation model. ASME J. Fluids Eng. 124, 617–624 (2002)

    Article  Google Scholar 

  35. Delannoy, Y., Kueny, J.L.: Two phase flow approach in unsteady cavitation modeling. In: Proceedings of the Spring Meeting of the Fluids Engineering Division, 153–158 (1990)

  36. Wang, G., Ostoja-Starzewski, M.: Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl. Math. Model. 31, 417–447 (2007)

    Article  MATH  Google Scholar 

  37. Merkle, C.L., Feng, J., Buelow, P.E.O.: Computational modeling of sheet cavitations. In: Proceedings of Third International Symposium on Cavitation, Grenoble, France (1998)

  38. Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J.L.: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations. ASME J. Fluids Eng. 125, 38–45 (2003)

    Article  Google Scholar 

  39. Kinzel, M.P., Lindau, J.W., Peltier, L.J., et al.: Detached-eddy simulations for cavitating flows. AIAA, 2007-4098 (2007)

  40. Wu, J., Wang, G., Shyy, W.: Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models. Int. J. Numer. Methods Fluids 49, 739–761 (2005)

    Article  MATH  Google Scholar 

  41. Reboud, J.L., Stutz, B., Coutier-Delgosha, O.: Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: Proceedings of the Third Symposium on Cavitation, Grenoble, France (1998)

  42. Huang, B., Wang, G., Yu, Z., et al.: Detached-eddy simulation for time-dependent turbulent cavitating flows. Chin. J. Mech. Eng. 25, 484–490 (2012)

    Article  Google Scholar 

  43. Johansen, S.T., Wu, J., Shyy, W.: Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 25, 10–21 (2004)

    Article  Google Scholar 

  44. Song, M.T., Xu, L.H., Peng, X.X., et al.: An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int. J. Multiph. Flow 90, 79–87 (2017)

    Article  Google Scholar 

  45. Arndt, R.E.A., Pennings, P., Bosschers, J., et al.: The singing vortex. Interface Focus 5, 1–11 (2015)

    Article  Google Scholar 

  46. Wang, Y.W., Liao, L.J., Du, T.Z., et al.: A study on the collapse of cavitation bubble surrounding the underwater-launched projectile and its fluid–structure coupling effects. Ocean Eng. 84, 228–236 (2014)

    Article  Google Scholar 

  47. Chae, E.J.: Dynamic Response and Stability of Flexible Hydrofoils in Incompressible and Viscous Flow. [Ph.D. Thesis], University of Michigan, Ann Arbor, America (2015)

  48. Luo, X., Ji, B., Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28, 335–358 (2016)

    Article  Google Scholar 

  49. Zobeiri, A., Ausoni, P., Avellan, F., et al.: How oblique trailing edge of a hydrofoil reduces the vortex-induced vibration. J. Fluids Struct. 32, 78–89 (2012)

    Article  Google Scholar 

  50. Ji, B., Luo, X.W., Arndt, R.E.A., et al.: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction. Ocean Eng. 87, 64–77 (2014)

    Article  Google Scholar 

  51. Chen, G., Wang, G., Hu, C., et al.: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel. Int. J. Multiph. Flow 72, 133–140 (2015)

    Article  Google Scholar 

  52. De La Torre, O., Escaler, X., Egusquiza, E., et al.: Experimental investigation of added mass effects on a hydrofoil under cavitation conditions. J. Fluids Struct. 39, 173–187 (2013)

    Article  Google Scholar 

  53. Amromin, E., Kovinskaya, S.: Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J. Fluids Struct. 14, 735–751 (2000)

    Article  Google Scholar 

  54. Kamakoti, R., Shyy, W.: Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40, 535–558 (2004)

    Article  MATH  Google Scholar 

  55. Benaouicha, M., Astolfi, J.A., Ducoin, A.: A Numerical study of cavitation induced vibration. In: Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington, USA, 1–8 (2010)

  56. Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., et al.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Farhat, C., vander Zee, K., Geuzaine, Ph: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity. Comput. Methods Appl. Mech. Eng. 195, 1973–2001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Campbell, R.L., Paterson, E.G.: Fluid–structure interaction analysis of flexible turbomachinery. J. Fluids Struct. 27, 1376–1391 (2011)

    Article  Google Scholar 

  59. Michler, C., Hulshoff, S.J., van Brummelen, E.H., et al.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33, 839–848 (2004)

    Article  MATH  Google Scholar 

  60. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Young, Y.L., Chae, E.J., Akcabay, D.T.: Hybrid algorithm for modeling of fluid–structure interaction in incompressible viscous flows. Acta Mech. Sin. 28, 1030–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Matthies, H.G., Steindorf, H.: Partitioned strong coupling algorithms for fluid–structure interaction. Comput. Struct. 81, 805–812 (2003)

    Article  Google Scholar 

  63. Belanger, F., Paidoussis, M.P., Langre, E.: Time-marching analysis of fluid-coupled systems with large added mass. AIAA J. 33, 752–757 (1995)

    Article  Google Scholar 

  64. Forster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196, 1278–1293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Grekula, M., Bark, G.: Experimental study of cavitation in a Kaplan model turbine. In: Proceedings of 4th International Symposium on Cavitation, Pasadena, Ca, USA (2001)

  66. Sato, K., Shimojo, S.: Detailed observations on a starting mechanism for shedding of cavitation cloud. In: Proceedings of 5th International Symposium on Cavitations, Japan (2003)

  67. Amromin, E.: Development and validation of CFD models for initial stages of cavitation. J. Fluids Eng. 136, 1–33 (2014)

    Article  Google Scholar 

  68. Arakeri, V.H., Acosta, A.J.: Viscous effects in the inception of cavitation on axisymmetric bodies. ASME J. Fluid Eng. 95, 519–527 (1973)

    Article  Google Scholar 

  69. Foeth, E.J., Van Doorne, C.W.H., Van Terwisga, T., et al.: Time resolved PIV and flow visualization of 3D sheet cavitation. Exp. Fluids 40, 503–513 (2006)

    Article  Google Scholar 

  70. Stutz, B., Reboud, J.L.: Two-phase flow structure of sheet cavitations. Phys. Fluids 9, 3678–3686 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ji, B., Luo, X., Wu, Y., et al.: Partially-averaged Navier–Stokes method with modified k-e model for cavitating flow around a marine propeller in a non-uniform wake. Int. J. Heat Mass Transf. 55, 6582–6588 (2012)

    Article  Google Scholar 

  72. Stutz, B., Reboud, J.L.: Experiments on unsteady cavitation. Exp. Fluids 22, 191–198 (1997)

    Article  MATH  Google Scholar 

  73. Li, X., Wang, G., Zhang, M., et al.: Structures of supercavitating multiphase flows. Int. J. Therm. Sci. 47, 1263–1275 (2008)

    Article  Google Scholar 

  74. Long, X., Zhang, J., Wang, Q., et al.: Experimental investigation on the performance of jet pump cavitation reactor at different area ratios. Exp. Therm. Fluid Sci. 78, 309–321 (2016)

    Article  Google Scholar 

  75. Fukaya, M., Ono, S., Udo, R.: Prediction of cavitation intensity in pumps based on propagation analysis of bubble collapse pressure using multi-point vibration acceleration method. Int. J. Fluid Mach. Syst. 2, 165–171 (2009)

    Article  Google Scholar 

  76. Ducoin, A., Astolfi, J.A., Gobert, M.-L.: An experimental study of boundary-layer transition induced vibrations on a hydrofoil. J. Fluids Struct. 32, 37–51 (2012)

    Article  Google Scholar 

  77. Wu, Q., Huang, B., Wang, G.: Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow. Int. J. Multiph. Flow 74, 19–33 (2015)

    Article  Google Scholar 

  78. Leroux, J.B., Coutier-Delgosha, O., Astolfi, J.A.: A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Phys. Fluids 17, 1–20 (2005)

    Article  MATH  Google Scholar 

  79. Akcabay, D.T., Chae, E.J., Young, Y.L., et al.: Cavity induced vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484 (2014)

    Article  Google Scholar 

  80. Zhang, B.: Physical and numerical investigation of unsteady cavitating flow mechanism and hydrodynamic characteristics. [Ph.D. Thesis], Beijing Institute of Technology, China (2009)

  81. Luo, X.W., Ji, B., Zhang, Y., et al.: Cavitating flow over a mini hydrofoil. Chin. Phys. Lett. 29, 016401 (2012)

    Article  Google Scholar 

  82. Dular, M., Khlifa, I., Fuzier, S., et al.: Scale effect on unsteady cloud cavitation. Exp. Fluids 53, 1233–1250 (2012)

    Article  Google Scholar 

  83. Wang, G., Liu, S., Shintani, M., et al.: Study on cavitation damage characteristics around a hollow-jet valve. JSME Int. J. Ser. B 42, 649–658 (1999)

    Article  Google Scholar 

  84. Wang, G.Y., Senocak, I., Shyy, W., et al.: Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37, 551–581 (2001)

    Article  Google Scholar 

  85. Kim, D.J., Sung, H.J., Choi, C.H., et al.: Cavitation instabilities of an inducer in a cryogenic pump. Acta Astronaut. 132, 19–24 (2017)

    Article  Google Scholar 

  86. Ji, B., Luo, X.W., Wu, Y.L., et al.: Numerical and experimental study on unsteady shedding of partial cavitation. Mod. Phys. Lett. B 24, 1441–1444 (2010)

    Article  MATH  Google Scholar 

  87. Huang, B., Wang, G.: Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Sci. China Tech. Sci. 54, 1801–1812 (2011)

    Article  MATH  Google Scholar 

  88. Peng, X.X., Ji, B., Cao, Y., et al.: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils. Int. J. Multiph. Flow 79, 10–22 (2016)

    Article  Google Scholar 

  89. Wu, Q., Wang, G.Y., Huang, B., et al.: Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows. J. Phys. Conf. Ser. 656, 012105 (2015)

    Article  Google Scholar 

  90. Huang, B., Young, Y.L., Wang, G.Y., et al.: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. J. Fluids Eng. 135, 071301 (2013)

    Article  Google Scholar 

  91. Kato, H., Konno, A., Maeda, M., et al.: Possibility of quantitative prediction of cavitation erosion without model test. ASME J. Fluids Eng. 118, 582–588 (1996)

    Article  Google Scholar 

  92. Kirschner, I.N., Fine, N.E., Uhlman, J.S., et al.: Numerical modeling of supercavitating flows. Technical report. DTIC (2001)

  93. Semenenko, V.N.: Artificial supercavitation: physics and calculation. RTO AVT/VKI special course: supercavitating flows, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, 12–16 (2001)

  94. Shen, Y., Dimotakis, P.: The influence of surface cavitation on hydrodynamic forces. In: Proceedings of 22nd ATTC, St. Johns, 44–53 (1989)

  95. Ducoin, A., Huang, B., Young, Y. L.: Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Mach. 2012, 215678, 1–17 (2012)

  96. Luo, X.W., Ji, B., Peng, X.X., et al.: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation. ASME J. Fluids Eng. Trans. 134, 041202 (2012)

    Article  Google Scholar 

  97. Zwart, P., Gerber, A., Belamri, T.: A two-phase flow model for predicting cavitation dynamics. In: Fifth International Conference on Multiphase Flow, Yokohama, Japan (2004)

  98. Ducoin, A., Huang, B., Young, Y.L.: Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. Int. J. Rotating Mach. Article 2012, (2012)

  99. Huang, B.,Ducoin, A.,Young,Y.L.:Evaluation of cavitation models for prediction of transient cavitating flows around a pitching hydrofoil. In: Proceedings of 8th International Symposium on Cavitation, Singapore (2012)

  100. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  101. Cho, Y.C., Du, W., Gupta, A., et al.: Surrogate-based modeling and dimension-reduction techniques for thermo-fluid and energy systems. In: Proceeding of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 13–17 (2011)

  102. Hu, C., Wang, G., Chen, G., et al.: Surrogate model-based optimization for the headform design of an axisymmetric body. Ocean Eng. 107, 237–245 (2015)

    Article  Google Scholar 

  103. Shyy, W., Cho, Y.-C., Du, W., et al.: Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta. Mech. Sin. 27, 845–865 (2011)

    Article  MATH  Google Scholar 

  104. Wu, Q., Wang, G.Y., Huang, B.: Parameter optimization and analysis of a filter-based density correction model. J. Ship Mech. 20, 789–798 (2016)

    Google Scholar 

  105. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6, 207–226 (1996)

  106. Klostermann, J., Schaake, K., Schwarze, R.: Numerical simulation of a rising bubble by VOF with surface compression. Int. J. Numer. Methods Fluids 71, 960–982 (2013)

    Article  MathSciNet  Google Scholar 

  107. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics, Technical Report, No. 496 (1935)

  108. Ducoin, A., Young, Y.L.: Hydroelastic response and stability of a hydrofoil in viscous flow. J. Fluids Struct. 38, 40–57 (2013)

    Article  Google Scholar 

  109. Huang, B., Zhao, Y., Wang, G.: Large eddy simulation of turbulent vortex–cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92, 113–124 (2014)

    Article  Google Scholar 

  110. Young, Y.L., Motley, M.R., Yeung, R.W.: Three-dimensional numerical modeling of the transient fluid–structural interaction response of tidal turbines. J. Offshore Mech. Arctic Eng. 132, 011101 (2010)

    Article  Google Scholar 

  111. Stenius, I., Rosen, A., Kuttenkeuler, J.: Hydroelastic interaction in panel-water impacts of high speed craft. Ocean Eng. 38, 371–381 (2011)

    Article  Google Scholar 

  112. Chimakurthi, S.K., Tang, J., Palacios, R., et al.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. AIAA J. 47, 1865–1878 (2009)

    Article  Google Scholar 

  113. Ducoin, A.: Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [Ph.D. Thesis], Ecole Centrale de Nantes, France (2008) (in French)

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant 51679005), the Natural Science Foundation of Beijing Municipality (Grant 3172029), and the Ph.D. Programs Foundation of Ministry of Education of China (Grant 20131101120014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wu, Q. & Huang, B. Dynamics of cavitation–structure interaction. Acta Mech. Sin. 33, 685–708 (2017). https://doi.org/10.1007/s10409-017-0685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0685-4

Keywords

Navigation