Skip to main content
Log in

High-precision solution to the moving load problem using an improved spectral element method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yau, J.D., Yang, Y.B., Kuo, S.R.: Impact response of high speed rail bridges and riding comfort of rail cars. Eng. Struct. 21, 836–844 (1999)

    Article  Google Scholar 

  2. Wu, Y.S., Yang, Y.B.: Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Eng. Struct. 25, 251–265 (2003)

    Article  Google Scholar 

  3. Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T.: Suspended bridges subjected to earthquake and moving loads. Eng. Struct. 45, 223–237 (2012)

    Article  Google Scholar 

  4. Fu, S., Cui, W.: Dynamic responses of a ribbon floating bridge under moving loads. Mar. Struct. 29, 246–256 (2012)

    Article  Google Scholar 

  5. Boschetti, G., Caracciolo, R., Richiedei, D., et al.: Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot. Comput. Integr. Manuf. 30, 256–264 (2014)

    Article  Google Scholar 

  6. Yang, W., Zhang, Z., Shen, R.: Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mech. Res. Commun. 34, 260–266 (2007)

    Article  MATH  Google Scholar 

  7. Karttunen, A.T., Hertzen, R.: Dynamic response of a cylinder cover under a moving load. Int. J. Mech. Sci. 82, 170–178 (2014)

    Article  Google Scholar 

  8. Dyniewicz, B.: Space-time finite element approach to general description of a moving inertial load. Finite Elem. Anal. Des. 62, 8–17 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kidarsa, A., Scott, M.H., Higgins, C.C.: Analysis of moving loads using force-based finite elements. Finite Elem. Anal. Des. 44, 214–224 (2008)

    Article  Google Scholar 

  10. Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part 1: infinite bar under moving axial loads. Comput. Struct. 84, 1368–1380 (2006)

    Article  Google Scholar 

  11. Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part II: infinite beam under moving harmonic loads. Comput. Struct. 86, 2056–2063 (2008)

    Article  Google Scholar 

  12. Yang, B., Tan, C.A., Bergman, L.A.: Direct numerical procedure for solution of moving oscillator problems. J. Eng. Mech. 126, 462–469 (2000)

    Article  Google Scholar 

  13. Yang, Y.B., Lin, C.L., Yau, J.D., et al.: Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings. J. Sound Vibr. 269, 345–360 (2004)

    Article  Google Scholar 

  14. Doyle, J.F., Farris, T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990)

    Google Scholar 

  15. Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd edn. Springer, New York (1997)

  16. Hong, M., Park, I., Lee, U.: Dynamics and waves characteristics of the FGM axial bars by using spectral element method. Compos. Struct. 107, 585–593 (2014)

    Article  Google Scholar 

  17. Nanda, N., Kapuria, S., Gopalakrishnan, S.: Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams. J. Sound Vib. 333, 3120–3137 (2014)

    Article  Google Scholar 

  18. Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)

    Article  Google Scholar 

  19. Lee, U.: Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 20, 587–592 (1998)

    Article  Google Scholar 

  20. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Book  MATH  Google Scholar 

  21. Santos, E.R.O., Arruda, J.R.F., Dos Santos, J.M.C.: Modeling of coupled structural systems by an energy spectral element method. J. Sound Vib. 316, 1–24 (2008)

    Article  Google Scholar 

  22. Lee, U.: Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 8, 357–366 (2001)

    Article  Google Scholar 

  23. Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  MATH  Google Scholar 

  24. Wang, Y.Z., Li, F.M., Huang, W.H., et al.: Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. Int. J. Solids Struct. 45, 4203–4210 (2008)

    Article  MATH  Google Scholar 

  25. Wu, Z.J., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Article  Google Scholar 

  27. Wen, S.R., Lu, N.L., Wu, Z.J.: Dynamic property analysis of the space-frame structure using the spectral element method. Waves Random Complex Media 24, 404–420 (2014)

    Article  MATH  Google Scholar 

  28. Pesterev, A.V., Tan, C.A., Bergman, L.A.: A new method for calculating bending moment and shear force in moving load problems. J. Appl. Mech. Trans. ASME 68, 252–259 (2001)

    Article  MATH  Google Scholar 

  29. Pesterev, A.V., Bergman, L.A.: An improved series expansion of the solution to the moving oscillator problem. J. Vib. Acoust. Trans. ASME 122, 54–61 (2000)

    Article  Google Scholar 

  30. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  31. Ouyang, H.J.: Moving-load dynamic problems: a tutorial (with a brief overview). Mech. Syst. Signal Proc. 25, 2039–2060 (2011)

    Article  Google Scholar 

  32. Frýba, L.: Vibration of Solids and Structures Under Moving Loads, 3rd ed. Thomas Telford Ltd., London (1999)

  33. Lou, P., Au, F.T.K.: Finite element formulae for internal forces of Bernoulli–Euler beams under moving vehicles. J. Sound Vib. 332, 1533–1552 (2013)

    Article  Google Scholar 

  34. Lian, Y.P., Zhang, X., Liu, Y.: An adaptive finite element material point method and its application in extreme deformation problems. Comput. Meth. Appl. Mech. Eng. 241–244, 275–285 (2012)

  35. Palma, R., Pérez-Aparicio, J.L., Taylor, R.L.: Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Meth. Appl. Mech. Eng. 213–216, 93–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Key Technology R&D Program (Grant 2011BAJ02B01-02) and the National Natural Science Foundation of China (Grant 11602065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Rui Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, SR., Wu, ZJ. & Lu, NL. High-precision solution to the moving load problem using an improved spectral element method. Acta Mech. Sin. 34, 68–81 (2018). https://doi.org/10.1007/s10409-017-0678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0678-3

Keywords

Navigation