Skip to main content
Log in

Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yoon, J., Baca, A.J., Park, S.I., et al.: Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008)

    Article  Google Scholar 

  2. Kim, D.H.: Epidermal electronics. Science 333, 838–843 (2011). doi:10.1126/science.1206157

    Article  Google Scholar 

  3. Kim, D.H., Lu, N., Ghaffari, R., et al.: Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011)

    Article  Google Scholar 

  4. Song, J., Feng, X., Huang, Y.: Mechanics and thermal management of stretchable inorganic electronics. Natl. Sci. Rev. 3, 128–143 (2016)

  5. Feng, X., Lu, B.W., Wu, J., et al.: Review on stretchable and flexible inorganic electronics. Acta Phys. Sin. 63, 014201 (2014). (in Chinese)

    Google Scholar 

  6. Tu, H., Xu, Y.: A silicon-on-insulator complementary-metal-oxide-semiconductor compatible flexible electronics technology. Appl. Phys. Lett. 101, 182 (2012)

    Google Scholar 

  7. Zhang, N.B., Guo, Q.Q., Yang, J.: The development of digital printing technologies for flexible electronics devices. Sci. Sin. 46, 044608 (2016)

    Google Scholar 

  8. Kim, N., Graham, S.: Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics. Thin Solid Films 547, 57–62 (2013)

    Article  Google Scholar 

  9. Ohishi, T., Kawada, H., Yoshida, T., et al.: Development of a high-performance flexible substrate for flexible electronics: joining TAC films and an ultra-thin Glassby using TEOS-DAC synthesized by the sol–gel method. Mater. Sci. Appl. 06, 1100–1110 (2015)

    Google Scholar 

  10. Song, J.: Mechanics of stretchable electronics. Curr. Opin. Solid State Mater. Sci. 19, 160–170 (2015)

    Article  Google Scholar 

  11. Russo, A., Ahn, B.Y., Adams, J.J., et al.: Pen-on-paper flexible electronics. Adv. Mater. 23, 3426–3430 (2011)

    Article  Google Scholar 

  12. Sun, Y., Roger, J.A.: Inorganic semiconductors for flexible electronics. Adv. Mater. 38, 1897–1916 (2007)

    Article  Google Scholar 

  13. Lo, K.H., Christensen, R.M., Wu, E.M.: A high-order theory of plate deformation—part 1: homogeneous plates. J. Appl. Mech. 44, 663–668 (1977)

    Article  MATH  Google Scholar 

  14. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  15. Reissner, E.: On asymptotic expansions for the sixth-order linear theory problem of transverse bending of orthotropic elastic plates. Comput. Methods Appl. Mech. Eng. 85, 75–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, D., Li, X.: An overall view of laminate theories based on displacement hypothesis. J. Compos. Mater. 30, 1539–1561 (1996)

    Article  Google Scholar 

  17. Savithri, S., Varadan, T.K.: Large deflection analysis of laminated composite plates. Int. J. Nonlinear Mech. 28, 1–12 (1993)

    Article  MATH  Google Scholar 

  18. Savithri, S., Varadan, T.K.: Accurate bending analysis of laminated orthotropic plates. AIAA J. 28, 1842–1844 (1971)

    Article  Google Scholar 

  19. Sciuva, M.D.: An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J. Appl. Mech. 54, 589–596 (1987)

    Article  MATH  Google Scholar 

  20. Sciuva, M.D.: Multilayered anisotropic plate models with continuous interlaminar stresses. Compos. Struct. 22, 149–167 (1992)

    Article  Google Scholar 

  21. Sun, C., Whitney, J.M.: Theories for the dynamic response of laminated plates. AIAA J. 11, 178–183 (2012)

    Article  Google Scholar 

  22. Carrera, E.: Historical review of Zig–Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 287–308 (2003)

    Article  Google Scholar 

  23. Li, X., Liu, D.: Zigzag theory for composite laminates. AIAA J. 33, 1163–1165 (1995)

    Article  MATH  Google Scholar 

  24. Tessler, A., Sciuva, M.D., Gherlone, M.: A refined zigzag beam theory for composite and sandwich beams. J. Compos. Mater. 43, 1051–1081 (2009)

    Article  Google Scholar 

  25. Zhu, Y.C.: Transcendence of certain trigonometric series. Acta Math. Sin. 18, 481–488 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11572022 and 11172022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhong Meng or Shuodao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wang, Z., Liu, B. et al. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics. Acta Mech. Sin. 34, 48–61 (2018). https://doi.org/10.1007/s10409-017-0670-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0670-y

Keywords

Navigation