Skip to main content
Log in

Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient’s specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Natarajan, S.K., Xiang, J.P., Tremmel, M., et al.: Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42, E139–E139 (2011)

    Article  Google Scholar 

  2. Forget, T.R., Benitez, R., Vezneclaroglu, E., et al.: A review of size and location of ruptured intracranial aneurysms. Neurosurgery 49, 1322–1325 (2001)

    Article  Google Scholar 

  3. Dhar, S., Tremmel, M., Mocco, J., et al.: Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63, 185–197 (2008)

    Article  Google Scholar 

  4. Rahman, M., Smietana, J., Hauck, E., et al.: Size ratio correlates with intracranial aneurysm rupture status a prospective study. Stroke 41, 916–920 (2010)

    Article  Google Scholar 

  5. Shojima, M., Oshima, M., Takagi, K., et al.: Magnitude and role of wall shear stress on cerebral aneurysm—computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35, 2500–2505 (2004)

    Article  Google Scholar 

  6. Nayak, K.S., Nielsen, J.F., Bernstein, M.A., et al.: Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. R 17, 71 (2015)

    Article  Google Scholar 

  7. Schubert, T., Bieri, O., Pansini, M., et al.: Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging the effect of multidirectional velocity encoding. Investig. Radiol. 49, 189–194 (2014)

    Article  Google Scholar 

  8. Veeraswamy, R.K., Birjiniuk, J., Ruddy, J.M., et al.: Phase-contrast magnetic resonance imaging reveals novel fluid dynamics in a patient-derived silicone model of descending thoracic aortic dissection. J. Vasc. Surg. 61, 128s–129s (2015)

    Article  Google Scholar 

  9. Young, P.M., McGee, K.P., Bolster, B., et al.: Magnetic resonance 4D flow reveals unusual hemodynamics associated with aneurysm formation and a possible cause of cryptogenic stroke in a patient with aortic dissection. J. Comput. Assist. Tomogr. 38, 216–218 (2014)

    Article  Google Scholar 

  10. Nakagawa, S., Murai, Y., Wada, T., et al.: 4D flow preliminary investigation of a direct carotid cavernous fistula due to a ruptured intracavernous aneurysm. BMJ Case Rep. 2015, 206084 (2015)

    Article  Google Scholar 

  11. Cebral, J.R., Castro, M.A., Burgess, J.E., et al.: Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26, 2550–2559 (2005)

    Google Scholar 

  12. Shojima, M., Oshima, M., Takagi, K., et al.: Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36, 1933–1938 (2005)

    Article  Google Scholar 

  13. Hassan, T., Timofeev, E.V., Saito, T., et al.: A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk of factors for lesion rupture. J. Neurosurg. 103, 662–680 (2005)

  14. Goubergrits, L., Schaller, J., Kertzscher, U., et al.: Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J. R. Soc. Interface 9, 677–688 (2012)

    Article  Google Scholar 

  15. Kulcsar, Z., Ugron, A., Marosfoi, M., et al.: Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. Am. J. Neuroradiol. 32, 587–594 (2011)

    Article  Google Scholar 

  16. Sato, M., Saito, N., Sakamoto, N., et al.: High wall shear stress gradient suppress morphological responses of endothelial cells to fluid flow. IFMBE Proc. 25, 312–313 (2010)

    Google Scholar 

  17. Singh, P.K., Marzo, A., Howard, B., et al.: Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation. Clin. Neurol. Neurosurg. 112, 306–313 (2010)

    Article  Google Scholar 

  18. Kawaguchi, T., Nishimura, S., Kanamori, M., et al.: Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J. Neurosurg. 117, 774–780 (2012)

    Article  Google Scholar 

  19. Shimogonya, Y., Ishikawa, T., Imai, Y., et al.: Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42, 550–554 (2009)

    Article  Google Scholar 

  20. Xiang, J.P., Natarajan, S.K., Tremmel, M., et al.: Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)

    Article  Google Scholar 

  21. Cebral, J.R., Mut, F., Sforza, D., et al.: Clinical application of image-based CFD for cerebral aneurysms. Int. J Numer. Methods Biomed. Eng. 27, 977–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Deshpande, R., Huang, D., et al.: Numerical analysis of blast furnace hearth inner profile by using CFD and heat transfer model for different time periods. Int. J. Heat. Mass Transf. 51, 186–197 (2008)

    Article  MATH  Google Scholar 

  23. Zhang, Y., Takao, H., Murayama, Y., et al.: Propose a wall shear stress divergence to estimate the risks of intracranial aneurysm rupture. Sci. World J. 2013, 160–169 (2013)

  24. Balogh, M., Parente, A., Benocci, C.: RANS simulation of ABL flow over complex terrains applying an Enhanced k-epsilon model and wall function formulation: implementation and comparison for fluent and OpenFOAM. J. Wind Eng. Ind. Aerodyn. 104, 360–368 (2012)

    Article  Google Scholar 

  25. Zakaria, M.S., Ismail, F., Tamagawa, M., et al.: Numerical analysis using a fixed grid method for cardiovascular flow application. J. Med. Imaging Health Inform. 6, 1483–1488 (2016)

    Article  Google Scholar 

  26. Zhang, Y., Sia, S.F., Morgan, M.K., et al.: Flow resistance analysis of extracranial-to-intracranial (EC-IC) vein bypass. J. Biomech. 45, 1400–1405 (2012)

    Article  Google Scholar 

  27. Berg, P., Stucht, D., Janiga, G., et al.: Cerebral blood flow in a healthy circle of willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J. Biomech. Eng. 136, 041003 (2014)

    Article  Google Scholar 

  28. van Ooij, P., Schneiders, J.J., Marquering, H.A., et al.: 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics. Am. J. Neuroradiol. 34, 1785–1791 (2013)

  29. Zhang, Y., Furusawa, T., Sia, S.F., et al.: Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation. Comput. Methods Biomech. Biomed. Eng. 16, 488–494 (2013)

  30. Dong, J.L., Wong, K.K.L., Tu, J.Y.: Hemodynamics analysis of patient-specific carotid bifurcation: a CFD model of downstream peripheral vascular impedance. Int. J. Numer. Methods Biomed. Eng. 29, 476–491 (2013)

  31. Tariq, U., Hsiao, A., Alley, M., et al.: Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J. Magn. Reson. Imaging 37, 1419–1426 (2013)

    Article  Google Scholar 

  32. Stankovic, Z., Allen, B.D., Garcia, J., et al.: 4D flow imaging with MRI. Cardiovasc. Diagn. Therapy 4, 173–192 (2014)

    Google Scholar 

  33. Isoda, H., Ohkura, Y., Kosugi, T., et al.: Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology 52, 913–920 (2010)

    Article  Google Scholar 

  34. Stalder, A.F., Liu, Z., Hennig, J., et al.: Patient specific hemodynamics: combined 4D Flow-Sensitive MRI and CFD. In: Computational Biomechanics Medicine: Soft Tissues and the Musculoskeletal Sys., Springer, New York, 27–38 (2011)

  35. Berg, P., Roloff, C., Beuing, O., et al.: The computational fluid dynamics rupture challenge 2013-phase II: variability of hemodynamic simulations in two intracranial aneurysms. J. Biomech. Eng. 137, 121008 (2015)

    Article  Google Scholar 

  36. Dong, J., Inthavong, K., Tu, J.: Image-based computational hemodynamics evaluation of atherosclerotic carotid bifurcation models. Comput. Biol. Med. 43, 1353–1362 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the Independent Research Fund of Tsinghua University (Grant 20141081265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Xuemei Zhao and Rui Li have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, R., Chen, Y. et al. Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics. Acta Mech. Sin. 33, 472–483 (2017). https://doi.org/10.1007/s10409-017-0636-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0636-0

Keywords

Navigation