Skip to main content
Log in

Effect of electric boundary conditions on crack propagation in ferroelectric ceramics

  • Research Paper
  • Solid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the effect of electric boundary conditions on Mode I crack propagation in ferroelectric ceramics is studied by using both linear and nonlinear piezoelectric fracture mechanics. In linear analysis, impermeable cracks under open circuit and short circuit are analyzed using the Stroh formalism and a rescaling method. It is shown that the energy release rate in short circuit is larger than that in open circuit. In nonlinear analysis, permeable crack conditions are used and the nonlinear effect of domain switching near a crack tip is considered using an energy-based switching criterion proposed by Hwang et al. (Acta Metal. Mater., 1995). In open circuit, a large depolarization field induced by domain switching makes switching much more difficult than that in short circuit. Analysis shows that the energy release rate in short circuit is still larger than that in open circuit, and is also larger than the linear result. Consequently, whether using linear or nonlinear fracture analysis, a crack is found easier to propagate in short circuit than in open circuit, which is consistent with the experimental observations of Kounga Njiwa et al. (Eng. Fract. Mech., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)

    Article  MATH  Google Scholar 

  2. Suo, Z., Kuo, C.M., Barnett, D.M., et al: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gao, H., Barnett, D.M.: An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29 (1996)

    Article  Google Scholar 

  4. Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 45, 4695–4702 (1997)

    Article  Google Scholar 

  5. Xu, X.L., Rajapakse, R.K.N.D.: On a plane crack in piezoelectric solids. Int J Solids Struct 38, 7643–7658 (2001)

    Article  MATH  Google Scholar 

  6. Zhang, T.Y., Zhao, M.H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38, 147–289 (2001)

    Article  Google Scholar 

  7. Park, Y.E., Tobin, A.: On electric field effects in fracture of piezoelectric materials. In: Lee, J.S., Maugin, G.A., Shindo, Y. eds. ASME Mechanics of Electromagnetic Materials and Structures AMD-161, MD-42, 51–62 (1993)

    Google Scholar 

  8. Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995a)

    Article  Google Scholar 

  9. Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995b)

    Article  Google Scholar 

  10. Wang, H., Singh, R.N.: Crack propagation in piezoelectric ceramics: Effect of applied electric field. J. Appl. Phys. 81, 7471–7479 (1997)

    Article  Google Scholar 

  11. Fu, R., Zhang, T.Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)

    Article  Google Scholar 

  12. Yan, D.J., Huang, H.Y., Cheung, C.W., et al.: Fracture criterion for conductive cracks in soda-lime glass under combined mechanical and electric loading. Int. J. Fract. 164, 185–199 (2010)

    Article  Google Scholar 

  13. Li, Y.W., Li, F.X.: Two-dimensional domain switching induced tensile fracture in a crack-free PZT ceramics under orthogonal electromechanical loading. Appl. Phys. Lett. 97, 102903 (2010)

    Article  Google Scholar 

  14. Li, Y.W., Li, F.X.: In situ observation of electric field induced crack propagation in BaTiO3 crystals along the field direction. Scripta Materialia 67, 601–604 (2012)

    Article  Google Scholar 

  15. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press, London and New York (1971)

    Google Scholar 

  16. Berlincourt, D., Krueger, H.H.A.: Domain processes in lead titanate zirconate and barium titanate ceramics. J. Appl. Phys. 30, 1804–1810 (1959)

    Article  Google Scholar 

  17. Li, F.X., Fang, D.N.: Effects of electrical boundary conditions and poling approaches on the mechanical depolarization behavior of PZT ceramics. Acta Mater. 53, 2665–2673 (2005)

    Article  Google Scholar 

  18. Kounga Njiwa, A.B., Fett, T., Lupascu, D.C., et al.: Effect of geometry and electrical boundary conditions on R-curve for lead zirconate titanate ceramics. Eng. Fract. Mech. 73, 309–317 (2006)

    Article  Google Scholar 

  19. Stroh, A.N.: Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3, 625–646 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York/Oxford, 134–163 (1996)

    MATH  Google Scholar 

  21. Kumar, S., Singh, R. N.: Comment on “Fracture criterion for piezoelectric ceramics”. J. Am. Ceram. Soc. 79, 1133–1135 (1996)

    Article  Google Scholar 

  22. Sun, C.T., Park, S.B.: Reply to “Comment on ‘Fracture criterion for piezoelectric ceramics’”. J. Am. Ceram. Soc. 79, 1136 (1996)

    Article  Google Scholar 

  23. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Book  Google Scholar 

  24. Qi, H., Fang, D.N., Yao, Z.H.: FEM analysis of electromechanical coupling effect of piezoelectric materials. Comp. Mater. Sci. 8, 283–290 (1997)

    Article  Google Scholar 

  25. Park, Y.E.: Crack extension force in a piezoelectric materials. J Appl Mech-T ASME 57, 647–653 (1990)

    Article  Google Scholar 

  26. Sosa, H.: Plane problems in piezoelectric media with defects. Int. J. Solid Struct. 28, 491–505 (1991)

    Article  MATH  Google Scholar 

  27. Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2002)

    Article  Google Scholar 

  28. Balke, H., Drescher, J., Kommer, G.: Investigation of mechanical strain energy release rate with respect to fracture criterion for piezoelectric ceramics. Int. J. Fract. 89, L59–L64 (1998)

    Article  Google Scholar 

  29. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)

    Article  Google Scholar 

  30. Huber, J.E., Fleck, N.A., Landis, C.M., et al.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663–1697 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, F.X., Rajapakse, R.K.N.D.: A constrained domain switching model for polycrystalline ferroelectric ceramics. Part I: Model formulation and applications to tetragonal materials. Acta Mater. 55, 6472–6480 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. -X. Li or R. K. N. D. Rajapakse.

Additional information

The project was supported by the National Natural Science Foundation of China (11002002 and 11090331).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F.X., Sun, Y. & Rajapakse, R.K.N.D. Effect of electric boundary conditions on crack propagation in ferroelectric ceramics. Acta Mech Sin 30, 153–160 (2014). https://doi.org/10.1007/s10409-014-0030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0030-0

Keywords

Navigation