Skip to main content
Log in

Pressure-driven water flow through hydrophilic alumina nanomembranes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present an experimental study that focuses on pressure-driven flow of distilled water through γ alumina membranes with 5, 10 and 20 nm pore radii. The nanopore geometry, pore size and porosity are characterized using scanning electron microscopy images taken pre- and post-flow experiments. Comparisons of these images have shown reduction in the pore size, which is attributed to precipitation of hydroxyl groups on alumina surfaces. Measured flowrates compared with the Hagen–Poiseuille flow relations consistently predict 2.2 nm reductions in the pore size for three different membranes. This behavior can be explained by the formation of a thick stick layer of water molecules over hydroxylated alumina surfaces, evidenced by water droplet contact angle measurements that exhibit increased hydrophilicity of alumina surfaces. Other possible effects of the mismatch between theory and experiments such as unaccounted pressure losses in the system or the streaming potential effects were also considered, but shown to be negligible for current experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Ai Y, Yalcin SE, Gu D, Baysal O, Baumgart H, Qian S, Beskok A (2010) A low-voltage nano-porous electroosmotic pump. J Colloid Interface Sci 350:465–470

    Article  Google Scholar 

  • Alexander M, Thompson G, Beamson G (2000) Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: a procedure for curve fitting the O 1 s core level. Surf Interface Anal 29:468–477

    Article  Google Scholar 

  • Alwitt RS (1976) Aluminium–water system oxides and oxide films, vol 4. Marcel Dekker, Inc, New York, pp 169–254

    Google Scholar 

  • Belaud V, Valette S, Stremsdoerfer G, Bigerelle M, Benayoun S (2015) Wettability versus roughness: multi-scales approach. Tribol Int 82:343–349

    Article  Google Scholar 

  • Bowers A, Huang C (1985) Adsorption characteristics of polyacetic amino acids onto hydrous γ-Al2O3. J Colloid Interface Sci 105:197–215

    Article  Google Scholar 

  • Bowers AR, Huang C (1986) Adsorption characteristics of metal-EDTA complexes onto hydrous oxides. J Colloid Interface Sci 110:575–590

    Article  Google Scholar 

  • Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits1. J Phys Chem 68:1084–1091

    Article  Google Scholar 

  • Cooper C, Burch R (1999) An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Res 33:3695–3700

    Article  Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Das S, Guha A, Mitra SK (2013) Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers. Anal Chim Acta 804:159–166

    Article  Google Scholar 

  • De Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827

    Article  Google Scholar 

  • Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2004) Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J Catal 226:54–68

    Article  Google Scholar 

  • Duran C, Sato K, Hotta Y, Watari K (2007) Covalently connected particles in green bodies fabricated by tape casting. J Am Ceram Soc 90:279–282

    Article  Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal Chem 73:1979–1986

    Article  Google Scholar 

  • Ernst M, Lurot F, Schrotter J-C (2004) Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Appl Catal B Environ 47:15–25

    Article  Google Scholar 

  • Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L (2010) Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett 10:4067–4073

    Article  Google Scholar 

  • Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) DNA translocation in inorganic nanotubes. Nano Lett 5:1633–1637

    Article  Google Scholar 

  • Faust SD, Aly OM (1998) Chemistry of water treatment. CRC Press, Boca Raton

    Google Scholar 

  • Figeys D, Aebersold R (1998) Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry. Anal Chem 70:3721–3727

    Article  Google Scholar 

  • Fournier-Bidoz S, Kitaev V, Routkevitch D, Manners I, Ozin GA (2004) Highly ordered nanosphere imprinted nanochannel alumina (NINA). Adv Mater 16:2193–2196

    Article  Google Scholar 

  • Fung Y-LE, Wang H (2013) Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J Membr Sci 444:252–258

    Article  Google Scholar 

  • Ghorbanian J, Beskok A (2016) Scale effects in nano-channel liquid flows. Microfluid Nanofluidics 20:121

    Article  Google Scholar 

  • Ghorbanian J, Celebi AT, Beskok A (2016) A phenomenological continuum model for force-driven nano-channel liquid flows. J Chem Phys 145:184109

    Article  Google Scholar 

  • Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348

    Article  Google Scholar 

  • Gruener S, Hofmann T, Wallacher D, Kityk AV, Huber P (2009) Capillary rise of water in hydrophilic nanopores. Phys Rev E 79:067301

    Article  Google Scholar 

  • Gruener S, Wallacher D, Greulich S, Busch M, Huber P (2016) Hydraulic transport across hydrophilic and hydrophobic nanopores: flow experiments with water and n-hexane. Phys Rev E 93:013102

    Article  Google Scholar 

  • James RO, Parks GA (1982) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. In: Surface and colloid science. Springer, pp 119–216

  • Jansons KM (1988) Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition. Phys Fluids 31:15–17

    Article  MathSciNet  Google Scholar 

  • Jingxian Z, Dongliang J, Weisensel L, Greil P (2004) Deflocculants for tape casting of TiO 2 slurries. J Eur Ceram Soc 24:2259–2265

    Article  Google Scholar 

  • Joseph S, Aluru N (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8:452–458

    Article  Google Scholar 

  • Kane PF, Larrabee GB (2013) Characterization of solid surfaces. Springer, Berlin

    Google Scholar 

  • Kannam SK, Todd B, Hansen JS, Daivis PJ (2011) Slip flow in graphene nanochannels. J Chem Phys 135:016313

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Gad-el-Hak M (2002) Micro flows: fundamentals and simulation. Appl Mech Rev 55:B76

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer, Berlin

    MATH  Google Scholar 

  • Kasprzyk-Hordern B (2004) Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv Colloid Interface Sci 110:19–48

    Article  Google Scholar 

  • Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A Fluid Dyn 1:781–794

    Article  Google Scholar 

  • Kosmulski M (2001) Chemical properties of material surfaces, vol 102. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kumar SM, Roy S (2008) Filtration characteristics in dead-end microfiltration of living Saccharomyces cerevisiae cells by alumina membranes. Desalination 229:348–361

    Article  Google Scholar 

  • Legube B, Leitner NKV (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72

    Article  Google Scholar 

  • Lei L, Hu X, Chu H, Chen G, Yue P (1997) Catalytic wet air oxidation of dyeing and printing wastewater. Water Sci Technol 35:311–319

    Article  Google Scholar 

  • Li L, Mo J, Li Z (2014) Flow and slip transition in nanochannels. Phys Rev E 90:033003

    Article  Google Scholar 

  • Light TS (1984) Temperature dependence and measurement of resistivity of pure water. Anal Chem 56:1138–1142

    Article  Google Scholar 

  • Linsen BG (1970) Physical and chemical aspects of adsorbents and catalysts. Academic Press, London

    Google Scholar 

  • Liu Z-H, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  Google Scholar 

  • Morterra C, Magnacca G (1996) A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27:497–532

    Article  Google Scholar 

  • Natsume T, Yamauchi Y, Nakayama H, Shinkawa T, Yanagida M, Takahashi N, Isobe T (2002) A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. Anal Chem 74:4725–4733

    Article  Google Scholar 

  • Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VS (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859

    Article  Google Scholar 

  • Nguyen CT, Kim B (2016) Stress and surface tension analyses of water on graphene-coated copper surfaces. Int J Precis Eng Manuf 17:503–510

    Article  Google Scholar 

  • Nowack B, Lützenkirchen J, Behra P, Sigg L (1996) Modeling the adsorption of metal-EDTA complexes onto oxides. Environ Sci Technol 30:2397–2405

    Article  Google Scholar 

  • Park J, Regalbuto JR (1995) A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J Colloid Interface Sci 175:239–252

    Article  Google Scholar 

  • Patel F, Baig MA, Laoui T (2011) Processing of porous alumina substrate for multilayered ceramic filter. Desalination Water Treat 35:33–38

    Article  Google Scholar 

  • Ponomarev I, Meyerovich A (2003) Surface roughness and effective stick-slip motion. Phys Rev E 67:026302

    Article  Google Scholar 

  • Ran C, Ding G, Liu W, Deng Y, Hou W (2008) Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24:9952–9955

    Article  Google Scholar 

  • Regalbuto J, Navada A, Shadid S, Bricker M, Chen Q (1999) An experimental verification of the physical nature of Pt adsorption onto alumina. J Catal 184:335–348

    Article  Google Scholar 

  • Reymond J, Kolenda F (1999) Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol 103:30–36

    Article  Google Scholar 

  • Rice C, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024

    Article  Google Scholar 

  • Richardson S (1973) On the no-slip boundary condition. J Fluid Mech 59:707–719

    Article  MATH  Google Scholar 

  • Routkevitch D, Chan J, Xu J, Moskovits M (1997) Porous anodic alumina templates for advanced nanofabrication. In: Proceedings of the international symposium on pits and pores: formation, properties, and significance for advanced luminescent materials, vol 7. pp 350–357

  • Sposito G (1995) The environmental chemistry of aluminum. CRC Press, Boca Raton

    Google Scholar 

  • Sprycha R (1989a) Electrical double layer at alumina/electrolyte interface: I. Surface charge and zeta potential. J Colloid Interface Sci 127:1–11

    Article  Google Scholar 

  • Sprycha R (1989b) Electrical double layer at alumina/electrolyte interface: II. Adsorption of supporting electrolyte ions. J Colloid Interface Sci 127:12–25

    Article  Google Scholar 

  • Sung J, Zhang L, Tian C, Shen YR, Waychunas GA (2011) Effect of pH on the water/α-Al2O3 (1102) interface structure studied by sum-frequency vibrational spectroscopy. J Phys Chem C 115:13887–13893

    Article  Google Scholar 

  • Tang C-M, Li X-L (2013) Separative capability of γ-Al2O3 porous ceramic membrane modified by ZIF-8. Korean J Chem Eng 30:1119–1124

    Article  Google Scholar 

  • Thomas F, Schouller E, Bottero J (1995) Adsorption of salicylate and polyacrylate on mesoporous aluminas. Colloids Surf A Physicochem Eng Asp 95:271–279

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2004) Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20:10818–10828

    Article  Google Scholar 

  • Vajandar SK, Xu D, Markov DA, Wikswo JP, Hofmeister W, Li D (2007) SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 18:275705

    Article  Google Scholar 

  • van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022–1025

    Article  Google Scholar 

  • Van Heetvelde P et al (2013) A new method to graft titania using Grignard reagents. Chem Commun 49:6998–7000

    Article  Google Scholar 

  • Vincent O, Szenicer A, Stroock AD (2016) Capillarity-driven flows at the continuum limit. Soft Matter 12:6656–6661

    Article  Google Scholar 

  • Voronov RS, Papavassiliou DV, Lee LL (2006) Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J Chem Phys 124:204701

    Article  Google Scholar 

  • Wei CC, Chen OY, Liu Y, Li K (2008) Ceramic asymmetric hollow fibre membranes—one step fabrication process. J Membr Sci 320:191–197

    Article  Google Scholar 

  • Werder T, Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2003) On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Article  Google Scholar 

  • Wijnja H, Schulthess C (1999) ATR–FTIR and DRIFT spectroscopy of carbonate species at the aged γ-Al2O3/water interface. Spectrochim Acta A Mol Biomol Spectrosc 55:861–872

    Article  Google Scholar 

  • Ye J, Yin Q, Zhou Y (2009) Superhydrophilicity of anodic aluminum oxide films: from “honeycomb” to “bird’s nest”. Thin Solid Films 517:6012–6015

    Article  Google Scholar 

  • Yopps J, Fuerstenau D (1964) The zero point of charge of alpha-alumina. J Colloid Sci 19:61–71

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge valuable discussions with Prof. Michael Lattman of SMU Chemistry Department and assistance of Ms. Lael Irani and Mr. Vahid Jabbari for the zeta-potential measurements. This research was supported by Lyle School of Engineering Interdisciplinary Seed Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Beskok.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koklu, A., Li, J., Sengor, S. et al. Pressure-driven water flow through hydrophilic alumina nanomembranes. Microfluid Nanofluid 21, 124 (2017). https://doi.org/10.1007/s10404-017-1960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1960-1

Keywords

Navigation