Skip to main content
Log in

The effects of wall roughness on the methane flow in nano-channels using non-equilibrium multiscale molecular dynamics simulation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents a non-equilibrium multiscale molecular dynamics simulation method to investigate the effects of periodic wall surface roughness on the structure and mass transfer of methane fluid through the silicon nano-channels. In order to accurately capture the trajectories and microstructure of methane nano-fluidics, the present modification of OPLS fully atomic model is employed. Meanwhile, we introduce the corresponding coarse-grained model to solve the problem of wall–fluid interaction for methane Poiseuille flow within silicon atomic walls using the classical Lorentz–Berthelot mixing rules. The geometries of the upper wall roughness are modeled by rectangular waves with different amplitudes and wavelengths. The three-dimensional number densities of C (H) atom and kinetic energy distribution plots give a clear observation of the impacts of surface roughness on the localization micro-information of methane fluid. Moreover, the slip length of fluid over rough surface decreases with the increase in amplitude. The diffusion coefficients appear anisotropic, and the radial distribution functions decrease with the increase in the amplitude. These properties should be taken into account in the design of energy-saving emission reduction nano-fluidic devices. All numerical results also indicate that the presented method not only can well solve the issue of wall–fluid interactions, but also could accurately predict the micro-information and dynamic properties of methane Poiseuille flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:031504

    Article  Google Scholar 

  • Asproulis N, Kalweit M, Drikakis D (2012) A hybrid molecular continuum method using point wise coupling. Adv Eng Softw 46:85–92

    Article  Google Scholar 

  • Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  Google Scholar 

  • Bhadauria R, Aluru N (2013) A quasi-continuum hydrodynamic model for slit shaped nanochannel flow. J Chem Phys 139:074109

    Article  Google Scholar 

  • Bhatia SK, Nicholson D (2011) Modeling self-diffusion of simple fluids in nanopores. J Phys Chem B 115:11700–11711

    Article  Google Scholar 

  • Bhushan B (2000) Mechanics and reliability of flexible magnetic media. Springer, Berlin

    Book  Google Scholar 

  • Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  Google Scholar 

  • Bitsanis I, Magda J, Tirrell M, Davis H (1987) Molecular dynamics of flow in micropores. J Chem Phys 87:1733–1750

    Article  Google Scholar 

  • Cao B-Y, Chen M, Guo Z-Y (2006a) Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation. Int J Eng Sci 44:927–937

    Article  Google Scholar 

  • Cao B-Y, Chen M, Guo Z-Y (2006b) Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Phys Rev E 74:066311

    Article  Google Scholar 

  • Cao B-Y, Sun J, Chen M, Guo Z-Y (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10:4638–4706

    Article  Google Scholar 

  • Choi WY, Osabe T, Liu T-JK (2008) Nano-electro-mechanical nonvolatile memory (NEMory) cell design and scaling. IEEE Trans Electron Dev 55:3482–3488

    Article  Google Scholar 

  • Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434

    Article  Google Scholar 

  • Delhommelle J, Evans DJ (2001a) Configurational temperature profile in confined fluids. I. Atomic fluid. J Chem Phys 114:6229–6235

    Article  Google Scholar 

  • Delhommelle J, Evans DJ (2001b) Configurational temperature profile in confined fluids. II. Molecular fluids. J Chem Phys 114:6236–6241

    Article  Google Scholar 

  • DelRio FW, de Boer MP, Knapp JA, Reedy ED, Clews PJ, Dunn ML (2005) The role of van der Waals forces in adhesion of micromachined surfaces. Nat Mater 4:629–634

    Article  Google Scholar 

  • Diestler D, Schoen M, Hertzner AW, Cushman JH (1991) Fluids in micropores. III. Self-diffusion in a slit-pore with rough hard walls. J. Chem. Phys. 95:5432–5436

    Article  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic press, Cambridge

    MATH  Google Scholar 

  • Galea T-M, Attard P (2004) Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. Langmuir 20:3477–3482

    Article  Google Scholar 

  • Gargiuli J, Shapiro E, Gulhane H, Nair G, Drikakis D, Vadgama P (2006) Microfluidic systems for in situ formation of nylon 6, 6 membranes. J Membr Sci 282:257–265

    Article  Google Scholar 

  • Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A (2014) A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows. Microfluid Nanofluid 17:1011–1023

    Article  Google Scholar 

  • Granick S (1991) Motions and relaxations of confined liquids. Science 253:1374–1379

    Article  Google Scholar 

  • Hansen J-P, McDonald IR (1990) Theory of simple liquids. Elsevier, New York

    MATH  Google Scholar 

  • Hartkamp R, Ghosh A, Weinhart T, Luding S (2012) A study of the anisotropy of stress in a fluid confined in a nanochannel. J Chem Phys 137:044711

    Article  Google Scholar 

  • Hu C, Bai M, Lv J, Kou Z, Li X (2015) Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol Int 90:297–305

    Article  Google Scholar 

  • Jabbarzadeh A, Atkinson J, Tanner R (2000) Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Phys Rev E 61:690

    Article  Google Scholar 

  • Jiang C, Ouyang J, Liu Q, Li W, Zhuang X (2016a) Studying the viscosity of methane fluid for different resolution levels models using Poiseuille flow in a nano-channel. Microfluid Nanofluid 20:157

    Article  Google Scholar 

  • Jiang C, Ouyang J, Zhuang X, Wang L, Li W (2016b) An efficient fully atomistic potential model for dense fluid methane. J Mol Struct 1117:192–200

    Article  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  Google Scholar 

  • Kamal C, Chakrabarti A, Banerjee A, Deb S (2013) Silicene beyond mono-layers—different stacking configurations and their properties. J Phys Condens Mat 25:085508

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation. Springer, Berlin

    MATH  Google Scholar 

  • Kasiteropoulou D, Karakasidis T, Liakopoulos A (2012) A dissipative particle dynamics study of flow in periodically grooved nanochannels. Int J Numer Meth Fluids 68:1156–1172

    Article  MATH  Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E 73:051203

    Article  Google Scholar 

  • Kim H, Strachan A (2015) Effect of surface roughness and size of beam on squeeze-film damping-Molecular dynamics simulation study. J Appl Phys 118:204304

    Article  Google Scholar 

  • Kong CL (1973) Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12-6) potential and the Morse potential. J Chem Phys 59:2464–2467

    Article  Google Scholar 

  • Kumar G, Smith S, Jaiswal R, Beaudoin S (2008) Scaling of van der Waals and electrostatic adhesion interactions from the micro-to the nano-scale. J Adhes Sci Technol 22:407–428

    Article  Google Scholar 

  • Kumar V, Sridhar S, Errington JR (2011) Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces. J Chem Phys 135:184702

    Article  Google Scholar 

  • Liakopoulos A, Sofos F, Karakasidis TE (2016) Friction factor in nanochannel flows. Microfluid Nanofluid 20:24

    Article  Google Scholar 

  • Liem SY, Brown D, Clarke JH (1992) Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method. Phys Rev A 45:3706

    Article  Google Scholar 

  • Malijevský A (2014) Does surface roughness amplify wetting? J Chem Phys 141:184703

    Article  Google Scholar 

  • Mantzalis D, Asproulis N, Drikakis D (2011) Filtering carbon dioxide through carbon nanotubes. Chem Phys Lett 506:81–85

    Article  Google Scholar 

  • Markesteijn A, Hartkamp R, Luding S, Westerweel J (2012) A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel. J Chem Phys 136:134104

    Article  Google Scholar 

  • Mashayak S, Aluru N (2012a) Coarse-grained potential model for structural prediction of confined water. J Chem Theory Comput 8:1828–1840

    Article  Google Scholar 

  • Mashayak S, Aluru N (2012b) Thermodynamic state-dependent structure-based coarse-graining of confined water. J Chem Phys 137:214707

    Article  Google Scholar 

  • Menezes PL, Ingole SP, Nosonovsky M, Kailas SV, Lovell MR (2013) Tribology for scientists and engineers. Springer, Berlin

    Book  Google Scholar 

  • Mo G, Rosenberger F (1990) Molecular-dynamics simulation of flow in a two-dimensional channel with atomically rough walls. Phys Rev A 42:4688

    Article  Google Scholar 

  • Noid W (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139:090901

    Article  Google Scholar 

  • Noorian H, Toghraie D, Azimian A (2014) The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transfer 50:95–104

    Article  Google Scholar 

  • Poling BE, Prausnitz JM, John Paul OC, Reid RC (2001) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  • Priezjev NV (2007) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127:144708

    Article  Google Scholar 

  • Priezjev NV, Darhuber AA, Troian SM (2005) Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys Rev E 71:041608

    Article  Google Scholar 

  • Ranjith SK, Patnaik B, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232:174–188

    Article  MathSciNet  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Sadus RJ (2002) Molecular simulation of fluids. Elsevier, Netherlands

    Google Scholar 

  • Sbragaglia M, Benzi R, Biferale L, Succi S, Toschi F (2006) Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. Phys Rev Lett 97:204503

    Article  Google Scholar 

  • Schiermeier Q (2006) Methane finding baffles scientists. Nature 439:128

    Article  Google Scholar 

  • Shell MS (2008) The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J Chem Phys 129:108

    Article  Google Scholar 

  • Sofos F, Karakasidis T, Liakopoulos A (2009a) Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int J Heat Mass Transf 52:735–743

    Article  MATH  Google Scholar 

  • Sofos F, Karakasidis T, Liakopoulos A (2009b) Variation of transport properties along nanochannels: a study by non-equilibrium molecular dynamics. In: IUTAM symposium on advances in micro-and nanofluidics. Springer, pp 67–78

  • Sofos FD, Karakasidis TE, Liakopoulos A (2009c) Effects of wall roughness on flow in nanochannels. Phys Rev E 79:026305

    Article  MATH  Google Scholar 

  • Sofos F, Karakasidis TE, Liakopoulos A (2010) Effect of wall roughness on shear viscosity and diffusion in nanochannels. Int J Heat Mass Transf 53:3839–3846

    Article  MATH  Google Scholar 

  • Sofos F, Karakasidis TE, Liakopoulos A (2012) Surface wettability effects on flow in rough wall nanochannels. Microfluid Nanofluid 12:25–31

    Article  Google Scholar 

  • Sofos F, Karakasidis TE, Giannakopoulos AE, Liakopoulos A (2016) Molecular dynamics simulation on flows in nano-ribbed and nano-grooved channels. Heat Mass Transf 52:153–162

    Article  Google Scholar 

  • Sparreboom W, Van Den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  • Svoboda M, Malijevský A, Lísal M (2015) Wetting properties of molecularly rough surfaces. J Chem Phys 143:104701

    Article  Google Scholar 

  • Wang J, Chen D, Pui D (2007) Modeling of filtration efficiency of nanoparticles in standard filter media. J Nanopart Res 9:109–115

    Article  Google Scholar 

  • Zhang Y (2016a) Effect of wall surface modification in the combined Couette and Poiseuille flows in a nano channel. Int J Heat Mass Transf 100:672–679

    Article  Google Scholar 

  • Zhang Y (2016b) Effect of wall surface roughness on mass transfer in a nano channel. Int J Heat Mass Transf 100:295–302

    Article  Google Scholar 

  • Ziarani A, Mohamad A (2006) A molecular dynamics study of perturbed Poiseuille flow in a nanochannel. Microfluid Nanofluid 2:12–20

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees who have provided us with valuable comments and suggestions for improving our study. This work is financially supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB025903), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91434201) and the National Natural Science Foundation of China (Grant Nos. 11402210, 11671321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Ouyang, J., Li, W. et al. The effects of wall roughness on the methane flow in nano-channels using non-equilibrium multiscale molecular dynamics simulation. Microfluid Nanofluid 21, 92 (2017). https://doi.org/10.1007/s10404-017-1927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1927-2

Keywords

Navigation