Skip to main content
Log in

Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this article, the vibration and dynamic instability of cylindrical microshells made of functionally graded materials (FGMs) and containing flowing fluid are studied. In order to take the size effects into account, the modified couple stress elasticity theory is used in conjunction with the classical first-order shear deformation shell theory. The material properties of FGM microshells are considered to be graded in the thickness direction on the basis of the power-law function. By using Hamilton’s principle, the non-classical governing differential equations of motion and related boundary conditions are derived. Subsequently, a Navier-type exact solution method is carried out to obtain the imaginary and real parts of natural frequencies of different modes for various values of fluid velocity, length scale parameter, material property gradient index, compressive axial load, and length-to-radius ratio. It is found that for microshells with lower length-to-radius ratios, the system diverges at lower values of fluid velocity. Also, it is demonstrated that by increasing the value of material property gradient index of FGM microshell, the natural frequency of the first mode and the critical flow velocity of the system increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aifantis E (1999) Strain gradient interpretation of size effects. Int J Fract 95:299–314

    Article  Google Scholar 

  • Amabili M, Garziera R (2002) Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. Part II: shells containing or immersed in axial flow. J Fluids Struct 16:31–51

    Article  Google Scholar 

  • Amabili M, Pellicano F, Paı̈doussis MP (2002) Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid. Comput Struct 80:899–906

    Article  Google Scholar 

  • Ansari R, Norouzzadeh A, Gholami R, Shojaei MF, Hosseinzadeh M (2014) Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment. Phys E 61:148–157

    Article  Google Scholar 

  • Dai H, Wang L, Ni Q (2015) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluid 18:49–55

    Article  Google Scholar 

  • El Chebair A, Misra A, Païdoussis M (1990) Theoretical study of the effect of unsteady viscous forces on inner- and annular-flow-induced instabilities of cylindrical shells. J Sound Vib 138:457–478

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2:189–203

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira A, Batra R, Roque C, Qian L, Martins P (2005) Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos Struct 69:449–457

    Article  Google Scholar 

  • Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Ganapathi M (2007) Dynamic stability characteristics of functionally graded materials shallow spherical shells. Compos Struct 79:338–343

    Article  Google Scholar 

  • Gao XL, Zhang G (2014) A microstructure-and surface energy-dependent third-order shear deformation beam model. Zeitschrift für angewandte Mathematik und Physik, pp 1–24

  • Gurtin M, Weissmüller J, Larche F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78:1093–1109

    Article  Google Scholar 

  • Huang Y, Yang L-E, Luo Q-Z (2013) Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos B Eng 45:1493–1498

    Article  Google Scholar 

  • Ke L-L, Wang Y-S, Yang J, Kitipornchai S (2012) Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci 50:256–267

    Article  MathSciNet  Google Scholar 

  • Kitipornchai S, Ke L, Yang J, Xiang Y (2009) Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J Sound Vib 324:962–982

    Article  Google Scholar 

  • Koiter W (1964) Couple stresses in the theory of elasticity, I and II. In: Nederl. Akad. Wetensch. Proc. Ser. B, pp 17–29

  • Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Langthjem M, Olhoff N (2003) Modal expansion of the perturbation velocity potential for a cantilevered fluid-conveying cylindrical shell. J Fluids Struct 17:147–161

    Article  Google Scholar 

  • Lee H-L, Chang W-J (2009) Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. J Phys: Condens Matter 21:115302

    Google Scholar 

  • Liu J, Mei Y, Xia R, Zhu W (2012) Large displacement of a static bending nanowire with surface effects. Phys E 44:2050–2055

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mindlin R, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  • Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Paidoussis MP, Issid N (1974) Dynamic stability of pipes conveying fluid. J Sound Vib 33:267–294

    Article  Google Scholar 

  • Paidoussis M, Issid NT (1976) Experiments on parametric resonance of pipes containing pulsatile flow. J Appl Mech 43:198–202

    Article  Google Scholar 

  • Sahmani S, Ansari R, Gholami R, Darvizeh A (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B Eng 51:44–53

    Article  Google Scholar 

  • Shaat M, Mahmoud F, Gao X-L, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79:31–37

    Article  Google Scholar 

  • Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials. Appl Math Model 36:3094–3111

    Article  MathSciNet  MATH  Google Scholar 

  • Sheng G, Wang X (2010) Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads. Compos Struct 93:162–170

    Article  Google Scholar 

  • Suhubl E, Eringen AC (1964) Nonlinear theory of micro-elastic solids—II. Int J Eng Sci 2:389–404

    Article  Google Scholar 

  • Timoshenko S, Gere JM (1961) Theory of elastic stability, vol 294. McGraw-Hill, New York

    Google Scholar 

  • Toorani M, Lakis A (2001) Shear deformation in dynamic analysis of anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid. Comput Methods Appl Mech Eng 190:4929–4966

    Article  MATH  Google Scholar 

  • Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46:2757–2764

    Article  MATH  Google Scholar 

  • Vardoulakis I, Exadaktylos G, Kourkoulis S (1998) Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. Le Journal de Physique IV 8:Pr8-399–Pr8-406

    Google Scholar 

  • Wang L (2010) Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys E 43:437–439

    Article  Google Scholar 

  • Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190

    Article  Google Scholar 

  • Weaver D, Unny T (1973) On the dynamic stability of fluid-conveying pipes. J Appl Mech 40:48–52

    Article  MATH  Google Scholar 

  • Wu T-L, Shukla K, Huang JH (2007) Post-buckling analysis of functionally graded rectangular plates. Compos Struct 81:1–10

    Article  Google Scholar 

  • Xia W, Wang L (2010) Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluid Nanofluid 9:955–962

    Article  Google Scholar 

  • Xia W, Wang L, Yin L (2010) Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int J Eng Sci 48:2044–2053

    Article  MathSciNet  MATH  Google Scholar 

  • Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zhou X, Wang L (2012) Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett 7:679–684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or R. Gholami.

Appendix 1

Appendix 1

$$\begin{aligned} M_{11} = &\,I_{1} ,M_{14} = I_{2} ,M_{22} = I_{1} ,M_{25} = I_{2} ,M_{33} = I_{1} + F_{mn} , \\ M_{41} = &\, I_{2} ,M_{44} = I_{3} ,M_{52} = I_{2} ,M_{55} = I_{3} \\ C_{33} = &\, \frac{{8F_{mn} mU}}{L} \\ \end{aligned}$$

The classical components:

$$\begin{aligned} K_{11}^{{\prime }} = &\, A_{11} \alpha_{m}^{2} + A_{55} \beta_{n}^{2} ,K_{12}^{{\prime }} = \left( {A_{12} + A_{55} } \right)\alpha_{m} \beta_{n} ,K_{13}^{{\prime }} = - \frac{{A_{12} \alpha_{m} }}{R}, \\ K_{14}^{{\prime }} = &\, B_{11} \alpha_{m}^{2} + B_{55} \beta_{n}^{2} ,K_{15}^{{\prime }} = (B_{12} + B_{55} )\alpha_{m} \beta_{n} , \\ K_{21}^{{\prime }} = &\, (A_{12} + A_{55} )\alpha_{m} \beta_{n} ,K_{22}^{{\prime }} = A_{11} \beta_{n}^{2} + A_{55} \alpha_{m}^{2} + \frac{{k_{s} A_{55} }}{{R^{2} }},K_{23}^{'} = - \frac{{k_{s} A_{55} + A_{11} }}{R}\beta_{n} , \\ K_{24}^{{\prime }} = &\, (B_{12} + B_{55} )\alpha_{m} \beta_{n} ,K_{25}^{{\prime }} = B_{11} \beta_{n}^{2} + B_{55} \alpha_{m}^{2} - \frac{{k_{s} A_{55} }}{R}, \\ K_{31}^{{\prime }} = &\, - \frac{{A_{12} \alpha_{m} }}{R},K_{32}^{{\prime }} = - \frac{{k_{s} A_{55} + A_{11} }}{R}\beta_{n} , \\ K_{33}^{{\prime }} = &\, k_{s} A_{55} \left( {\alpha_{m}^{2} + \beta_{n}^{2} } \right) + N_{xx}^{0} \alpha_{m}^{2} + \frac{{A_{11} }}{{R^{2} }} - F_{mn} \alpha_{m}^{2} U^{2} , \\ K_{34}^{{\prime }} = &\, k_{s} A_{55} \alpha_{m} - \frac{{B_{12} \alpha_{m} }}{R},K_{35}^{{\prime }} = k_{s} A_{55} \beta_{n} - \frac{{B_{11} \beta_{n} }}{R}, \\ K_{41}^{{\prime }} = &\, B_{11} \alpha_{m}^{2} + B_{55} \beta_{n}^{2} ,K_{42}^{{\prime }} = (B_{12} + B_{55} )\alpha_{m} \beta_{n} ,K_{43}^{{\prime }} = k_{s} A_{55} \alpha_{m} - \frac{{B_{12} \alpha_{m} }}{R}, \\ K_{44}^{{\prime }} = &\, D_{11} \alpha_{m}^{2} + D_{55} \beta_{n}^{2} + k_{s} A_{55} ,K_{45}^{{\prime }} = (D_{12} + D_{55} )\alpha_{m} \beta_{n} , \\ K_{51}^{{\prime }} = &\,\, (B_{12} + B_{55} )\alpha_{m} \beta_{n} ,K_{52}^{{\prime }} = B_{11} \beta_{n}^{2} + B_{55} \alpha_{m}^{2} - \frac{{k_{s} A_{55} }}{R},K_{53}^{{\prime }} = k_{s} A_{55} \beta_{n} - \frac{{B_{11} \beta_{n} }}{R}, \\ K_{54}^{{\prime }} = &\, (D_{12} + D_{55} )\alpha_{m} \beta_{n} ,K_{55}^{{\prime }} = D_{11} \beta_{n}^{2} + D_{55} \alpha_{m}^{2} + k_{s} A_{55} \\ \end{aligned}$$

The non-classical components:

$$\begin{aligned} K_{11}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{2} \beta_{n}^{2} + \beta_{n}^{4} + 4\frac{{\beta_{n}^{2} }}{{R^{2} }}} \right),K_{12}^{{\prime \prime }} = - \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} + \frac{{\alpha_{m} \beta_{n} }}{{R^{2} }}} \right), \\ K_{13}^{{\prime \prime }} = &\, \frac{1}{2}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n}^{2} }}{R},K_{14}^{{\prime \prime }} = - \frac{5}{4}A_{55} l^{2} \frac{{\beta_{n}^{2} }}{R} + \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{2} \beta_{n}^{2} + \beta_{n}^{4} } \right), \\ K_{15}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n} }}{R} - \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} } \right), \\ K_{21}^{{\prime \prime }} = &\, - \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} + \frac{{\alpha_{m} \beta_{n} }}{{R^{2} }}} \right), \\ K_{22}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{4} + \alpha_{m}^{2} \beta_{n}^{2} + 2\frac{{\alpha_{m}^{2} }}{{R^{2} }} + \frac{{\beta_{n}^{2} }}{{R^{2} }} + \frac{1}{{R^{4} }}} \right), \\ K_{23}^{{\prime \prime }} = &\, - \frac{1}{4}A_{55} l^{2} \left( {3\frac{{\alpha_{m}^{2} \beta_{n} }}{R} + \frac{{\beta_{n}^{3} }}{R} + \frac{{\beta_{n} }}{{R^{3} }}} \right), \\ K_{24}^{{\prime \prime }} = &\, \frac{1}{2}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n} }}{R} + \frac{1}{4}B_{55} l^{2} \left( { - \alpha_{m}^{3} \beta_{n} - \alpha_{m} \beta_{n}^{3} + \frac{{\alpha_{m} \beta_{n} }}{{R^{2} }}} \right), \\ K_{25}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {3\frac{{\alpha_{m}^{2} }}{R} + \frac{{\beta_{n}^{2} }}{R} - \frac{1}{{R^{3} }}} \right) + \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{4} + \alpha_{m}^{2} \beta_{n}^{2} - \frac{{\alpha_{m}^{2} }}{{R^{2} }}} \right), \\ K_{31}^{{\prime \prime }} = &\, \frac{1}{2}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n}^{2} }}{R},K_{32}^{{\prime \prime }} = - \frac{1}{4}A_{55} l^{2} \left( { - \frac{{\alpha_{m}^{2} \beta_{n} }}{R} + \frac{{\beta_{n}^{3} }}{R} + \frac{{\beta_{n} }}{{R^{3} }}} \right), \\ K_{33}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{4} - 2\alpha_{m}^{2} \beta_{n}^{2} + \beta_{n}^{4} + \frac{{\alpha_{m}^{2} }}{{R^{2} }} + \frac{{\beta_{n}^{2} }}{{R^{2} }}} \right), \\ K_{34}^{{\prime \prime }} = &\, - \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{3} + \alpha_{m} \beta_{n}^{2} + \frac{{\alpha_{m} }}{{R^{2} }}} \right),K_{35}^{{\prime \prime }} = \frac{1}{4}A_{55} l^{2} \left( {3\alpha_{m}^{2} \beta_{n} - \beta_{n}^{3} + \frac{{\beta_{n} }}{{R^{2} }}} \right), \\ K_{41}^{{\prime \prime }} = &\, - \frac{5}{4}A_{55} l^{2} \frac{{\beta_{n}^{2} }}{R} + \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{2} \beta_{n}^{2} + \beta_{n}^{4} } \right), \\ K_{42}^{{\prime \prime }} = &\, \frac{1}{2}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n} }}{R} + \frac{1}{4}B_{55} l^{2} \left( { - \alpha_{m}^{3} \beta_{n} - \alpha_{m} \beta_{n}^{3} + \frac{{\alpha_{m} \beta_{n} }}{{R^{2} }}} \right), \\ K_{44}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {\alpha_{m}^{2} + 4\beta_{n}^{2} + \frac{1}{{R^{2} }}} \right) - \frac{1}{2}B_{55} l^{2} \frac{{\beta_{n}^{2} }}{R} + \frac{1}{4}D_{55} l^{2} \left( {\alpha_{m}^{2} \beta_{n}^{2} + \beta_{n}^{4} } \right), \\ K_{45}^{{\prime \prime }} = &\, - \frac{3}{4}A_{55} l^{2} \alpha_{m} \beta_{n} - \frac{1}{4}D_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} } \right), \\ K_{51}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \frac{{\alpha_{m} \beta_{n} }}{R} - \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} } \right), \\ K_{52}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {3\frac{{\alpha_{m}^{2} }}{R} + \frac{{\beta_{n}^{2} }}{R} - \frac{1}{{R^{3} }}} \right) + \frac{1}{4}B_{55} l^{2} \left( {\alpha_{m}^{4} + \alpha_{m}^{2} \beta_{n}^{2} - \frac{{\alpha_{m}^{2} }}{{R^{2} }}} \right), \\ K_{53}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( { - \alpha_{m}^{2} \beta_{n} - \beta_{n}^{3} + \frac{{\beta_{n} }}{{R^{2} }}} \right), \\ K_{54}^{{\prime \prime }} = &\, - \frac{3}{4}A_{55} l^{2} \alpha_{m} \beta_{n} - \frac{1}{4}D_{55} l^{2} \left( {\alpha_{m}^{3} \beta_{n} + \alpha_{m} \beta_{n}^{3} } \right), \\ K_{55}^{{\prime \prime }} = &\, \frac{1}{4}A_{55} l^{2} \left( {4\alpha_{m}^{2} + \beta_{n}^{2} + \frac{1}{{R^{2} }}} \right) + \frac{1}{2}B_{55} l^{2} \frac{{\alpha_{m}^{2} }}{R} + \frac{1}{4}D_{55} l^{2} \left( {\alpha_{m}^{4} + \alpha_{m}^{2} \beta_{n}^{2} } \right) \\ \end{aligned}$$

where \(K_{ij} = K_{ij}^{{\prime }} + K_{ij}^{{\prime \prime }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Gholami, R., Norouzzadeh, A. et al. Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluid Nanofluid 19, 509–522 (2015). https://doi.org/10.1007/s10404-015-1577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1577-1

Keywords

Navigation