Skip to main content
Log in

Microfluidic analysis of PM2.5-induced epithelial–mesenchymal transition in human bronchial epithelial 16HBE cells

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Polluting particulate matter suspended in the air is a leading cause of lung carcinogenesis, a process often accompanied by epithelial to mesenchymal transition (EMT) of the bronchial epithelium. By providing a continuous supply of nutrients, microfluidic chips simulate the spatial characteristics of the cellular environment to enable integrated, flexible and high-throughput analysis of cell growth and function. Here, we used a microfluidic chip to evaluate the effects of the air pollutant PM2.5 on EMT in human bronchial epithelial 16HBE cells and on alveolar macrophage chemotaxis. PM2.5 induced NF-κB, PI3K, Snail and N-cadherin levels and repressed E-cadherin levels in 16HBE cells and promoted macrophage chemotaxis. Collectively, our results indicate that PM2.5 causes EMT in bronchial epithelial cells via induction of inflammatory pathways and shed light upon its pathological effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida SP, Casimiro E et al (2010) Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal. Environ Health 18:3901–3983

    Google Scholar 

  • Curl S, Vazquez-Martin A et al (2010) Metformin against TGF-β induced epithelial to mesenchymal transition (EMT): from cancer stem ceils to aging associated fibrosis. Cell Cycle 9(22):4461–4468

    Article  Google Scholar 

  • Dagher Z, Garcon G et al (2005) Pro-inflammatory effects of Dunkerque city air pollution particulate matter 2.5 in human epithelial lung cells (L132) in culture. J Appl Toxicol 25(2):166–175

    Article  Google Scholar 

  • Dagher Z et al (2007) Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 27:284–290

    Article  Google Scholar 

  • Dasari V et al (2006) Epithelial–mesenchymal transition in lung cancer: is tobacco the “smoking gun”? Am J Respir Cell Mol Biol 35:3–9

    Article  Google Scholar 

  • Deng X, Rui W et al (2013) PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PI3K/AKT signaling pathway in human lung alveolar epithelial A549 cell. Cell Biol Toxicol 29(3):143–157

    Article  Google Scholar 

  • Haraguchi M (2009) The role of the transcriptional regulator Snail in cell detachment, reattachment, and migration. Cell Adh Migr 3(3):259–263

    Article  Google Scholar 

  • Hegymegi Barakonyi B, Eros D et al (2009) Tyrosine kinase inhibitors small molecular weight compounds inhibiting EGFR. Curr Opin Mol Ther 11(3):308–321

    Google Scholar 

  • Hirohashi S et al (1998) Inactivation of the E-cadherin mediated cell adhesion system in human cancers. Am J Pathol 153:333–339

    Article  Google Scholar 

  • Ho YS, Chen CH, Wang YJ et al (2005) Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NF-kappa B activation and cyclin D1 up-regulation. Toxicol Appl Pharmacol 205:133–148

    Article  Google Scholar 

  • Huh Dongeun et al (2010) Reconstituting organ-level lung functions on a chip. Science 25(328):1662–1668

    Article  Google Scholar 

  • Janda E et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313

    Article  Google Scholar 

  • Kafoury RM, Madden MC (2005) Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alveolar macrophages and failed to induce apoptosis through activation of nuclear factor-kappa B (NF-kappa B). Int J Environ Res Public Health 2(1):107–113

    Article  Google Scholar 

  • Kawata M, Koinuma D et al (2012) TGF-β induced epithelial mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by proinflammatory cytokines derived from RAW macrophage cells. J Biochem 151(2):205–216

    Article  Google Scholar 

  • Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of eta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  Google Scholar 

  • Kim HJ, Litzenburger BC et al (2007) Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27:3165–3175

    Article  Google Scholar 

  • Krohn A et al (2014) Tumor cell heterogeneity in small cell lung cancer (SCLC): phenotypical and functional differences associated with epithelial–mesenchymal transition (EMT) and DNA methylation changes. PLoS One 9(6):e100249

    Article  Google Scholar 

  • Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18:684–692

    Article  Google Scholar 

  • Li B, Li YY, Tsao SW et al (2009) Targeting NF-kappa B signaling pathway suppresses tumor growth, angiogenesis, and metastasis of human esophageal cancer. Mol Cancer Ther 8(9):2635–2644

    Article  Google Scholar 

  • Liu CW, Li CH, Peng YJ, Cheng YW, Chen HW, Liao PL, Kang JJ, Yeng MH (2014) Snail regulates Nanog status during the epithelial–mesenchymal transition via the Smad1/Akt/GSK3β signaling pathway in non-small-cell lung cancer. Oncotarget 5(11):3880–3894

    Google Scholar 

  • Manteccap F et al (2010) Comparative acute lung inflammation induced by atmospheric PM and size-fractionated particles. Toxicol Lett 198(2):244–254

    Article  Google Scholar 

  • Milara J, Cortijol J (2012) Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des 18:3901–3938

    Article  Google Scholar 

  • Mouratis MA, Aidinis V (2011) Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med l7(5):355–361

    Article  Google Scholar 

  • Muqbil I, Wu J, Aboukameel A, Mohammad RM, Azmi AS (2014) Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol S1044-579X(14): 00078-9

  • Nakano T, Otsuki T (2013) Environmental air pollutants and the risk of cancer. Gan To Kagaku Ryoho 40(11):1441–1445

    Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14(9):813–822

    Article  Google Scholar 

  • Siyan W, Feng Y et al (2009) Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J Pharm Biomed Anal 49(3):806–810

    Article  Google Scholar 

  • Tania M, Khan MA, Fu J (2014) Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol 2 [Epub ahead of print]

  • Tepass U, Truong K, Godt D, Ikura M et al (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100

    Article  Google Scholar 

  • Tsurutani J, Castillo SS, Brognard J et al (2005) Tobacco components stimulate Akt-dependent proliferation and NF-kappa B-dependent survival in lung cancer cells. Carcinogenesis 26:1182–1195

    Article  Google Scholar 

  • Valavanidis A et al (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10(9):3886–3907

    Article  Google Scholar 

  • Veljkovic E et al (2011) Chronic exposure to cigarette smoke condensate in vitro induces epithelial to mesenchymal transition-like changes in human bronchial epithelial cells, BEAS-2B. Toxicol In Vitro 25(2):446–453

    Article  Google Scholar 

  • Wang RD, Wright JL, Churg A (2005) Transforming growth factor-beta1 drives airway remodeling in cigarette smoke-exposed tracheal explants. Am J Respir Cell Mol Biol 33:387–393

    Article  Google Scholar 

  • Xu J, Amouille S, Derynck R (2009) TGFβ induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  Google Scholar 

  • Xu Z et al (2013) Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34:4109–4117

    Article  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signaling in epithelial-to -mesenchymal transition. EMBO J 23:1155–1165

    Article  Google Scholar 

  • Zeisberg M et al (2009) Biomarkers for epithelial–mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  Google Scholar 

  • Zhao C, Liao J et al (2012) Involvement of TLR2 and TLR4 and TH1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol 24(13):918–927

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Natural Science Foundation of China (Nos. 91129733 and 81330060) and Innovative Research Team in University of Ministry of Education of China (No. IRT13049 to Q. Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Shuo Cui and Zhong-zhou He have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., He, Zz., Zhu, Zw. et al. Microfluidic analysis of PM2.5-induced epithelial–mesenchymal transition in human bronchial epithelial 16HBE cells. Microfluid Nanofluid 19, 263–272 (2015). https://doi.org/10.1007/s10404-014-1499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1499-3

Keywords

Navigation