Skip to main content
Log in

A self-powered microfluidic monodispersed droplet generator with capability of multi-sample introduction

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We presented a simple, self-powered microfluidic droplet generator capable of generating monodispersed droplets and performing multi-sample introduction. The sealed air-evacuated PDMS channels/chambers provide an internal pumping source, eliminating the needs of external bulky and expensive pumping equipments, and simplifying manual operations. Droplets produced by this droplet generator exhibited a narrow size distribution with a coefficient of variation below 3 %. The droplet size can be controlled in a flexible way by adjusting the hydraulic resistance of the channel networks or the hydrostatic pressure exerted on the inlets. Utilizing this droplet generator, multi-sample introduction was realized by demand-controlled run/stop of the droplet generation or by sequential addition of the different samples during the continuous droplet generation. This self-powered, portable, and easy-to-use droplet generator would extend the droplet-based applications into in-field analysis and facilitate exploitation of droplet microfluidics by non-technical users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abate AR, Weitz DA (2011) Syringe-vacuum microfluidics: a portable technique to create monodisperse emulsions. Biomicrofluidics 5:014107. doi:10.1063/1.3567093

    Article  Google Scholar 

  • Adamson DN, Mustafi D, Zhang JXJ, Zheng B, Ismagilov RF (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6:1178–1186. doi:10.1039/b604993a

    Article  Google Scholar 

  • Agresti JJ et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009. doi:10.1073/pnas.0910781107

    Article  Google Scholar 

  • Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105. doi:10.1063/1.2218058

    Article  Google Scholar 

  • Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12:422–433. doi:10.1039/c1lc20582j

    Article  Google Scholar 

  • Beer NR et al (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 80:1854–1858. doi:10.1021/ac800048k

    Article  Google Scholar 

  • Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200. doi:10.1073/pnas.0903542106

    Article  Google Scholar 

  • Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH (2011) Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem 83:1603–1608. doi:10.1021/ac102472a

    Article  Google Scholar 

  • Cao Z et al (2013) Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab Chip 13:171–178. doi:10.1039/c2lc40950j

    Article  Google Scholar 

  • Clausell-Tormos J et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437. doi:10.1016/j.chembiol.2008.04.004

    Article  Google Scholar 

  • Diguet A, Li H, Queyriaux N, Chen Y, Baigl D (2011) Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation. Lab Chip 11:2666–2669. doi:10.1039/c1lc20328b

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446. doi:10.1039/b510841a

    Article  Google Scholar 

  • Golberg A, Yarmush ML, Konry T (2013) Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta 180:855–860. doi:10.1007/s00604-013-0998-3

    Article  Google Scholar 

  • He MY, Kuo JS, Chiu DT (2005) Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems. Appl Phys Lett 87:031916. doi:10.1063/1.1997280

    Article  Google Scholar 

  • Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly (dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4:181–185. doi:10.1039/b403930k

    Article  Google Scholar 

  • Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6:236–241. doi:10.1039/b513424b

    Article  Google Scholar 

  • Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698. doi:10.1039/b813709a

    Article  Google Scholar 

  • Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci USA 103:19243–19248. doi:10.1073/pnas.0607502103

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503. doi:10.1103/PhysRevLett.92.054503

    Article  Google Scholar 

  • Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560. doi:10.1002/anie.200503540

    Article  Google Scholar 

  • Mazutis L, Baret J-C, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9:2665–2672. doi:10.1039/b903608c

    Article  Google Scholar 

  • Park S-Y, Wu T-H, Chen Y, Teitell MA, Chiou P-Y (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11:1010–1012. doi:10.1039/c0lc00555j

    Article  Google Scholar 

  • Shi WW, Qin JH, Ye NN, Lin BC (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–1435. doi:10.1039/b808753a

    Article  Google Scholar 

  • Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619. doi:10.1021/ja0354566

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microflulidic channels. Angew Chem Int Ed 45:7336–7356. doi:10.1002/anie.200601554

    Article  Google Scholar 

  • Sun M, Fang Q (2010) High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip 10:2864–2868. doi:10.1039/c005290f

    Article  Google Scholar 

  • Xu L, Lee H, Panchapakesan R, Oh KW (2012) Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab Chip 12:3936–3942. doi:10.1039/c2lc40456g

    Article  Google Scholar 

  • Zeng S, Li B, Su Xo, Qin J, Lin B (2009) Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9:1340–1343. doi:10.1039/b821803j

    Article  Google Scholar 

  • Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA (2010) High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem 82:3183–3190. doi:10.1021/ac902683t

    Article  Google Scholar 

  • Zhang K et al (2010) A gravity-actuated technique for flexible and portable microfluidic droplet manipulation. Microfluid Nanofluid 9:995–1001. doi:10.1007/s10404-010-0611-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Research in Scientific Instrument Program from National Natural Science Foundation of China (No. 31327001), Scientific Instrument Development Program from the Chinese Academy of Sciences (No. YZ201236), and Key Deployment Grant on Modern Agriculture from the Chinese Academy of Sciences (No. KSZD-EW-Z-021-1-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,772 kb)

Supplementary material 2 (AVI 8,806 kb)

Supplementary material 3 (AVI 12,914 kb)

Supplementary material 4 (AVI 7,224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, J. & Ma, B. A self-powered microfluidic monodispersed droplet generator with capability of multi-sample introduction. Microfluid Nanofluid 18, 1067–1073 (2015). https://doi.org/10.1007/s10404-014-1497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1497-5

Keywords

Navigation