Skip to main content
Log in

Sonographic assessment of subacromial bursa distension during arm abduction: establishing a threshold value in the diagnosis of subacromial impingement syndrome

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

In this study, we aimed to establish a quantitative threshold value in the diagnosis of subacromial impingement syndrome by measuring the thickness of the subacromial bursa during abduction and adduction.

Materials and methods

Forty-five patients with subacromial impingement syndrome and 54 healthy individuals underwent dynamic shoulder ultrasonography. The subacromial bursa, between the supraspinatus tendon margin and peribursal adipose tissue, was measured between the acromion and humeral head at its widest part. The subacromial impingement ratio was calculated by dividing the subacromial bursa thickness during abduction to the subacromial bursa thickness during adduction. Shapiro–Wilk test was used in the assessment of normal distribution of parameters.

Results

The mean subacromial bursa thickness in the abduction position was 1.8 ± 1.1 mm in the study group and 0.9 ± 0.3 mm in the control group. The mean subacromial bursa thickness in the adduction position was 0.9 ± 0.5 mm in the study group and 0.8 ± 0.3 mm in the control group. The subacromial impingement ratio showed a statistically significant difference between groups (p < 0.0001), and the ratio being 2.0 ± 0.5 in the study group and 1.2 ± 0.1 in the control group. For measurements performed in the abduction position, the best cut-off value was calculated as 1.3 mm, and sensitivity and specificity were 70.6 and 85.2%, respectively. The best cut-off value was 1.4 for the subacromial impingement ratio, and sensitivity and specificity were 88.2 and 96.3%, respectively.

Conclusion

Subacromial impingement ratio is a very practical and reliable method in subacromial impingement syndrome diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paavola M, Malmivaara A, Taimela S, FIMPACT Investigators, et al. Finnish Subacromial Impingement Arthroscopy Controlled Trial (FIMPACT): a protocol for a randomised trial comparing arthroscopic subacromial decompression and diagnostic arthroscopy (placebo control), with an exercise therapy control, in the treatment of shoulder impingement syndrome. BMJ Open. 2017;7:e014087.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akyol Y, Ulus Y, Durmuş D, et al. Shoulder muscle strength in patients with subacromial impingement syndrome: its relationship with duration of quality of life and emotional status. Turk J Phys Med Rehabil. 2013;59:176–81.

    Google Scholar 

  3. Neer CS. Impingement lesions. Clin Orthop Relat Res. 1983;173:70–7.

    Google Scholar 

  4. Daghir AA, Sookur PA, Shah S, et al. Dynamic ultrasound of the subacromial-subdeltoid bursa in patients with shoulder impingement: a comparison with normal volunteers. Skelet Radiol. 2012;41:1047–53.

    Article  Google Scholar 

  5. Micheroli R, Kyburz D, Ciurea A, et al. Correlation of findings in clinical and high resolution ultrasonography examinations of the painful shoulder. J Ultrason. 2015;15:29–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ottenheijm RP, Cals JW, Weijers R, et al. Ultrasound imaging for tailored treatment of patients with acute shoulder pain. Ann Fam Med. 2015;13:53–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ottenheijm RP, Jansen MJ, Staal JB, et al. Accuracy of diagnostic ultrasound in patients with suspected subacromial disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2010;91:1616–25.

    Article  PubMed  Google Scholar 

  8. Hegedus EJ, Goode A, Campbell S, et al. Physical examination tests of the shoulder: a systematic review with meta-analysis of individual tests. Br J Sports Med. 2008;42:80–92.

    Article  CAS  PubMed  Google Scholar 

  9. Bureau NJ, Beauchamp M, Cardinal E, et al. Dynamic sonography evaluation of shoulder impingement syndrome. AJR Am J Roentgenol. 2006;187:216–20.

    Article  PubMed  Google Scholar 

  10. Mulyadi E, Harish S, O’Neill J, et al. MRI of impingement syndromes of the shoulder. Clin Radiol. 2009;64:307–18.

    Article  CAS  PubMed  Google Scholar 

  11. Beaulieu CF, Hodge DK, Bergman AG, et al. Glenohumeral relationships during physiologic shoulder motion and stress testing: initial experience with open MR imaging and active imaging-plane registration. Radiology. 1999;212:699–705.

    Article  CAS  PubMed  Google Scholar 

  12. Graichen H, Bonel H, Stammberger T, et al. Subacromial space width changes during abduction and rotation: a 3-D MR imaging study. Surg Radiol Anat. 1999;21:59–66.

    Article  CAS  PubMed  Google Scholar 

  13. Daenen B, Houben G, Bauduin E, et al. Ultrasound of the shoulder. JBR-BTR. 2007;90:325–37.

    CAS  PubMed  Google Scholar 

  14. Guerini H, Pluot E, Pessis E, et al. Tears at the myotendinous junction of the infraspinatus: ultrasound findings. Diagn Interv Imaging. 2015;96:349–56.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu JC, Chen PH, Huang KC, et al. Efficiency of quantitative echogenicity for investigating supraspinatus tendinopathy by the gray-level histogram of two ultrasound devices. J Med Ultrason. 2017;44:297–303.

    Article  Google Scholar 

  16. Lee MH, Sheehan SE, Orwin JF, et al. Comprehensive shoulder US examination: a standardized approach with multimodality correlation for common shoulder disease. Radiographics. 2016;36:1606–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cullen DM, Breidahl WH, Janes GC. Diagnostic accuracy of shoulder ultrasound performed by a single operator. Australas Radiol. 2007;51:226–9.

    Article  CAS  PubMed  Google Scholar 

  18. Khoury V, Cardinal E, Bureau NJ. Musculoskeletal sonography: a dynamic tool for usual and unusual disorders. AJR Am J Roentgenol. 2007;188:63–73.

    Article  Google Scholar 

  19. O’Connor PJ, Rankine J, Gibbon WW, et al. Interobserver variation in sonography of the painful shoulder. J Clin Ultrasound. 2005;33:53–6.

    Article  PubMed  Google Scholar 

  20. Cole B, Twibill K, Lam P, et al. Not all ultrasounds are created equal: general sonography versus musculoskeletal sonography in the detection of rotator cuff tears. Shoulder Elbow. 2016;8:250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Holsbeeck M, Introcaso JH. Sonography of bursa. In: van Holsbeeck M, Introcaso JH, editors. Musculoskeletal ultrasound. Missouri: Mosby; 2001. p. 131–69.

    Google Scholar 

  22. Corazza A, Orlandi D, Fabbro E, et al. Dynamic high resolution ultrasound of the shoulder: how we do it. Eur J Radiol. 2015;84:266–77.

    Article  PubMed  Google Scholar 

  23. Gerber C, Zubler V, Hodler J, et al. Dynamic imaging and function of partial supraspinatus tendon tears. Arthroscopy. 2011;27:1180–6.

    Article  PubMed  Google Scholar 

  24. Beggs I. Shoulder ultrasound. Semin Ultrasound CT MR. 2011;32:101–13.

    Article  PubMed  Google Scholar 

  25. Farin PU, Jaroma H, Harju A, et al. Shoulder impingement syndrome: sonographic evaluation. Radiology. 1990;176:845–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hollister MS, Mack LA, Pattern RM, et al. Association of sonographically detected subacromial/subdeltoid bursal effusion and intraarticular fluid without rotator cuff tear. AJR Am J Roentgenol. 1995;165:605–8.

    Article  CAS  PubMed  Google Scholar 

  27. Collins RA, Gristina AG, Carter RE, et al. Ultrasonography of the shoulder. Static and dynamic imaging. Orthop Clin N Am. 1987;18:351–60.

    CAS  Google Scholar 

  28. Wang YC, Wang HK, Chen WS, et al. Dynamic visualization of the coracoacromial ligament by ultrasound. Ultrasound Med Biol. 2009;35:1242–8.

    Article  CAS  PubMed  Google Scholar 

  29. Roy JS, Braën C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br J Sports Med. 2015;49:1316–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Read JW, Perko M. Shoulder ultrasound: diagnostic accuracy for impingement syndrome, rotator cuff tear, and biceps tendon pathology. J Shoulder Elbow Surg. 1998;7:264–71.

    Article  CAS  PubMed  Google Scholar 

  31. Brossmann J, Preidler KW, Pedowitz RA, et al. Shoulder impingement syndrome: influence of shoulder position on rotator cuff impingement—an anatomic study. AJR. 1996;167:1511–5.

    Article  CAS  PubMed  Google Scholar 

  32. Tsai YH, Huang TJ, Hsu WH, et al. Detection of subacromial bursa thickening by sonography in shoulder impingement. Chang Gung Med J. 2007;30:135–41.

    PubMed  Google Scholar 

  33. Neumann CH, Holt RG, Steinbach LS, et al. MR imaging of the shoulder: appearance of the supraspinatus tendon in asymptomatic volunteers. AJR Am J Roentgenol. 1992;158:1281–7.

    Article  CAS  PubMed  Google Scholar 

  34. Coucanis G, Breidahl W, Burnham S. The relationship between subacromial bursa thickness on ultrasound and shoulder pain in open water endurance swimmers over time. J Sci Med Sport. 2015;18:373–7.

    Article  Google Scholar 

  35. Tagliafico A, Cadoni A, Bignotti B, Martinoli C. High-resolution ultrasound of rotator cuff and biceps reflection pulley in non-elite junior tennis players: anatomical study. BMC Musculoskelet Disord. 2014;15:241.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nutton RW, McBirnie JM, Phillips C. Treatment of chronic rotator-cuff impingement by arthroscopic subacromial decompression. J Bone Jt Surg Br. 1997;79:73–6.

    Article  CAS  Google Scholar 

  37. Henkus HE, Cobben LP, Coerkamp EG, et al. The accuracy of subacromial injections: a prospective randomized magnetic resonance imaging study. Arthroscopy. 2006;22:277–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Soker.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests and source of funding.

Ethical statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from patients for being included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soker, G., Gulek, B., Soker, E. et al. Sonographic assessment of subacromial bursa distension during arm abduction: establishing a threshold value in the diagnosis of subacromial impingement syndrome. J Med Ultrasonics 45, 287–294 (2018). https://doi.org/10.1007/s10396-017-0839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-017-0839-9

Keywords

Navigation