Skip to main content

Advertisement

Log in

Elastic modulus of the femoral trochanteric region measured by scanning acoustic microscopy in elderly women

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

We have devised a method that can obtain continuous detailed distributions of the elastic modulus along the measurement line in a non-decalcified specimen of human bone tissue. The aim of this study was to determine whether local variations exist in the distribution of mechanical properties within the trochanteric region of the femur of elderly females using a newly developed form of scanning acoustic microscopy (SAM) technology.

Methods

Human proximal femurs were harvested from seven female cadavers aged between 67 and 88 years at death. Using data collected with SAM, the elastic modulus of cortical and trabecular bone tissue of the lateral and medial trochanter was calculated and statistically analyzed.

Results

The longitudinal and transverse elastic moduli in cortical bone tissue of the lateral trochanter were found to be significantly lower than those of the medial trochanter in all specimens from individuals over age 70 (p < 0.05). Compared to that of the distal region, the longitudinal and transverse elastic moduli of trabecular bone tissue of the proximal region of the lateral trochanter were significantly lower in all specimens from individuals over age 80 (p < 0.05).

Conclusion

Our new method allows obtaining detailed distributions of the elastic modulus of bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18:1325–30.

    Article  CAS  PubMed  Google Scholar 

  2. Turner CH, Rho J, Takano Y, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32:437–41.

    Article  CAS  PubMed  Google Scholar 

  3. Zysset PK, Guo XE, Hoffler CE, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32:1005–12.

    Article  CAS  PubMed  Google Scholar 

  4. Hou FJ, Lang SM, Hoshaw SJ, et al. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31:1009–15.

    Article  CAS  PubMed  Google Scholar 

  5. Ladd AJ, Kinney JH, Haupt DL, et al. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res. 1998;16:622–8.

    Article  CAS  PubMed  Google Scholar 

  6. Niebur GL, Feldstein MJ, Yuen JC, et al. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33:1575–83.

    Article  CAS  PubMed  Google Scholar 

  7. Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37:27–35.

    Article  PubMed  Google Scholar 

  8. Raum K, Cleveland RO, Peyrin F, et al. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol. 2006;51:747–58.

    Article  PubMed  Google Scholar 

  9. Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1417–31.

    Article  CAS  PubMed  Google Scholar 

  10. Granke M, Grimal Q, Saïed A, et al. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone. 2011;49:1020–6.

    Article  PubMed  Google Scholar 

  11. Malo MK, Rohrbach D, Isaksson H, et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone. 2013;53:451–8.

    Article  CAS  PubMed  Google Scholar 

  12. Giversen IM. Time trends of mortality after first hip fractures. Osteoporos Int. 2007;18:721–32.

    Article  CAS  PubMed  Google Scholar 

  13. Braithwaite RS, Col NF, Wong JB. Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc. 2003;51:364–70.

    Article  PubMed  Google Scholar 

  14. Kannus P, Parkkari J, Sievänen H, et al. Epidemiology of hip fractures. Bone. 1996;18(1 Suppl):57S–63S.

    Article  CAS  PubMed  Google Scholar 

  15. Hagino H, Furukawa K, Fujiwara S, et al. Recent trends in the incidence and lifetime risk of hip fracture in Tottori, Japan. Osteoporos Int. 2009;20:543–8.

    Article  CAS  PubMed  Google Scholar 

  16. Parmon W, Bertoni HL. Ray interpretation of the material signature in the acoustic microscope. Electron Lett. 1979;15:684–6.

    Article  Google Scholar 

  17. Ishikawa I, Katakura K, Ogura Y. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:41–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi M. Japan Patent Application Number: 2000–028592, 2000.

  19. Nakatsuchi Y, Tateiwa H, Kobayashi M, et al. Detection of the microcracks in the human trochanteric region using a scanning acoustic microscope. Nihon Rinshou Biomech Gakkaishi (Japanese J Clin Biomech). 2001;22:269–74 (in Japanese).

    Google Scholar 

  20. Fung YC. Foundations of Solid Mechanics. Englewood Cliffs: Prentice-Hall; 1965. p. 178–81.

    Google Scholar 

  21. Shibano J, Kobayashi M, Omori S. Quick measurement method of microscopic distribution of mechanical property on solid surface using scanning acoustic microscope. Chouonpa Techno (Ultrason Technol). 2006;18:108–11 (in Japanese).

    Google Scholar 

  22. Fan Z, Rho JY. Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res A. 2003;67:208–14.

    Article  PubMed  Google Scholar 

  23. Van Rietbergen B, Odgaard A, Kabel J, et al. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res. 1998;16:23–8.

    Article  PubMed  Google Scholar 

  24. Keaveny TM, Pinilla TP, Crawford RP, et al. Systematic and random errors in compression testing of trabecular bone. J Orthop Res. 1997;15:101–10.

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs CR, Davis BR, Rieger CJ, et al. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics. J Biomech. 1999;32:1159–64.

    Article  CAS  PubMed  Google Scholar 

  26. Lemons RA, Quate CF. Acoustic microscopy: biomedical applications. Science. 1975;188:905–11.

    CAS  PubMed  Google Scholar 

  27. Wang X, Shen X, Li X, et al. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  28. Bell KL, Loveridge N, Power J, et al. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999;24:57–64.

    Article  CAS  PubMed  Google Scholar 

  29. Duda GN, Schneider E, Chao EY. Internal forces and moments in the femur during walking. J Biomech. 1997;30:933–41.

    Article  CAS  PubMed  Google Scholar 

  30. Van Rietbergen B, Huiskes R, Eckstein F, et al. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res. 2003;18:1781–8.

    Article  PubMed  Google Scholar 

  31. Rudman KE, Aspden RM, Meakin JR. Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online. 2006;20:12.

    Article  Google Scholar 

  32. Pöpperl G, Lochmüller E, Becker H, et al. Determination of calcaneal ultrasound properties ex situ: reproducibility, effects of storage, formalin fixation, maceration, and changes in anatomic measurement site. Calcif Tissue Int. 1999;65:192–7.

    Article  PubMed  Google Scholar 

  33. Ohman C, Dall’Ara E, Baleani M, et al. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech. 2008;23:1294–8 (Bristol, Avon).

    Article  Google Scholar 

  34. Nazarian A, Hermannsson BJ, Muller J, et al. Effects of tissue preservation on murine bone mechanical properties. J Biomech. 2009;42:82–6.

    Article  PubMed  Google Scholar 

  35. Currey JD, Brear K, Zioupos P, et al. Effect of formaldehyde fixation on some mechanical properties of bovine bone. Biomaterials. 1995;16:1267–71.

    Article  CAS  PubMed  Google Scholar 

  36. Burkhart KJ, Nowak TE, Blum J, et al. Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed Tech. 2010;55:361–5.

    Article  Google Scholar 

  37. Akhter MP, Lappe JM, Davies KM, et al. Transmenopausal changes in the trabecular bone structure. Bone. 2007;41:111–6.

    Article  CAS  PubMed  Google Scholar 

  38. Mödder UI, Achenbach SJ, Amin S, et al. Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res. 2010;25:415–22.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Nakatsuchi Y, Kobayashi M, Nomura A, et al. Acoustic anisotropy of normal and healing cortical bone. Nihon Rinshou Biomech Gakkaishi (Japanese J Clin Biomech). 1999;20:213–7 (in Japanese).

    Google Scholar 

  40. Kobayashi M, Shibano J, Nakatsuchi Y, et al. Anisotropic mechanical properties of femur bone measured by scanning acoustic microscope. Trans Jpn Soc Mech Eng. 2006;72:1072–9 (in Japanese).

    Article  Google Scholar 

  41. Jensen JS. Classification of trochanteric fractures. Acta Orthop Scand. 1980;51:803–10.

    Article  CAS  PubMed  Google Scholar 

  42. Schultz E, Miller TT, Boruchov SD, et al. Incomplete intertrochanteric fractures: imaging features and clinical management. Radiology. 1999;211:237–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Seiichi Omori for his support in data acquisition.

Conflict of interest

The authors do not have any conflicts of interest to declare.

Ethical statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Matsuki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuki, H., Shibano, J., Kobayashi, M. et al. Elastic modulus of the femoral trochanteric region measured by scanning acoustic microscopy in elderly women. J Med Ultrasonics 42, 303–313 (2015). https://doi.org/10.1007/s10396-014-0608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-014-0608-y

Keywords

Navigation