Skip to main content
Log in

Antimicrobial-Resistant Bacteria Carriage in Rodents According to Habitat Anthropization

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

It is increasingly suggested that the dynamics of antimicrobial-resistant bacteria in the wild are mostly anthropogenically driven, but the spatial and temporal scales at which these phenomena occur in landscapes are only partially understood. Here, we explore this topic by studying antimicrobial resistance in the commensal bacteria from micromammals sampled at 12 sites from a large heterogenous landscape (the Carmargue area, Rhone Delta) along a gradient of anthropization: natural reserves, rural areas, towns, and sewage-water treatment plants. There was a positive relationship between the frequency of antimicrobial-resistant bacteria and the level of habitat anthropization. Although low, antimicrobial resistance was also present in natural reserves, even in the oldest one, founded in 1954. This study is one of the first to support the idea that rodents in human-altered habitats are important components of the environmental pool of resistance to clinically relevant antimicrobials and also that a “One Health” approach is required to assess issues related to antimicrobial resistance dynamics in anthropized landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allen SE, Boerlin P, Janecko N, Lumsden JS, Barker IK, Pearl DL, Reid-Smith RJ, Jardine C (2011) Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol 77:882–888

    Article  CAS  PubMed  Google Scholar 

  • Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 6. https://doi.org/10.1186/s13756-017-0208-x

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182. https://doi.org/10.1016/j.tim.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Cerdà-Cuéllar M, Moré E, Ayats T, Aguilera M, Muñoz-González S, Antilles N, Ryan PG, González-Solís J (2019) Do humans spread zoonotic enteric bacteria in Antarctica? Sci Total Environ 654:190–196. https://doi.org/10.1016/j.scitotenv.2018.10.272

    Article  CAS  PubMed  Google Scholar 

  • Cristóbal-Azkarate J, Dunn JC, Day JMW, Amábile-Cuevas CF (2014) Resistance to antibiotics of clinical relevance in the fecal microbiota of Mexican wildlife. PLoS ONE 9:e107719. https://doi.org/10.1371/journal.pone.0107719

  • Dias D, Torres RT, Kronvall G, Fonseca C, Mendo S, Caetano T (2015) Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res Microbiol 166. https://doi.org/10.1016/j.resmic.2015.03.006

  • Dolejska M, Cizek A, Literak I (2007) High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from Black-headed Gulls in the Czech Republic. J Appl Microbiol 103:11–19

    Article  CAS  PubMed  Google Scholar 

  • Dolejska M, Papagiannitsis CC (2018) Plasmid-mediated resistance is going wild. Plasmid 99:99–111. https://doi.org/10.1016/j.plasmid.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  • Dujon AM, Ujvari B, Thomas F (2021) Cancer risk landscapes: A framework to study cancer in ecosystems. Sci Total Environ 763:142955. https://doi.org/10.1016/j.scitotenv.2020.142955

  • Franklin AB, VerCauteren KC, Maguire H, Cichon MK, Fischer JW, Lavelle MJ, Powell A, Root JJ, Scallan E (2013) Wild ungulates as disseminators of Shiga toxin-producing Escherichia coli in urban areas. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0081512

  • Furness LE, Campbell A, Zhang L, Gaze WH, McDonald RA (2017) Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance. Environ Res 154. https://doi.org/10.1016/j.envres.2016.12.014

  • Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA (1999) Antibiotic resistance found in wild rodents. Nature 401:233–234

    Article  CAS  PubMed  Google Scholar 

  • Goulas A, Belhadi D, Descamps A, Andremont A, Benoit P, Courtois S, Dagot C, Grall N, Makowski D, Nazaret S, Nélieu S, Patureau D, Petit F, Roose-Amsaleg C, Vittecoq M, Livoreil B, Laouénan C (2020) How effective are strategies to control the dissemination of antibiotic resistance in the environment? A Systematic Review. Environ Evid 9:4. https://doi.org/10.1186/s13750-020-0187-x

    Article  Google Scholar 

  • Guenther S, Grobbel M, Lübke-Becker A, Goedecke A, Friedrich ND, Wieler LH, Ewers C (2010) Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet Microbiol 144:219–225. https://doi.org/10.1016/j.vetmic.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS (2020) Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep 21. https://doi.org/10.15252/embr.202051034

  • Kahn LH (2017) Antimicrobial resistance: A One Health perspective. Trans R Soc Trop Med Hyg 111. https://doi.org/10.1093/trstmh/trx050

  • Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C (2009) Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol 75:559–566. https://doi.org/10.1128/AEM.01821-08

    Article  CAS  PubMed  Google Scholar 

  • Lahr J, Kooistra L (2010) Environmental risk mapping of pollutants: State of the art and communication aspects. Sci Total Environ 408:3899–3907. https://doi.org/10.1016/j.scitotenv.2009.10.045

    Article  CAS  PubMed  Google Scholar 

  • Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V (2010) Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9:54. https://doi.org/10.1186/1476-072X-9-54

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemaire S, Tamisier A, Gagnier F (1987) Surface, distribution et diversité des principaux milieux de Camargue. Leur évolution de 1942 à 1984. TERRE VIE Suppl 4:47–56

    Google Scholar 

  • Mazińska B, Hryniewicz W (2020) Antimicrobial resistance: Causes and consequences. PostępyMikrobiol - Adv Microbiol 59. https://doi.org/10.21307/pm-2020.59.3.18

  • Michael CA, Dominey-Howes D, Labbate M (2014) The antimicrobial resistance crisis: Causes, consequences, and management. Front Public Health 2. https://doi.org/10.3389/fpubh.2014.00145

  • Morrison L, Zembower TR (2020) Antimicrobial resistance. Global report on surveillance, World Health Organization. Gastrointest Endosc Clin N Am 30

  • Navarro-Gonzalez N, Mentaberre G, Porrero CM, Serrano E, Mateos A, López-Martín JM, Lavín S, Domínguez L (2012) Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in Northeastern Spain. PLoS ONE 7:e51614. https://doi.org/10.1371/journal.pone.0051614

  • Nhung NT, Cuong NV, Campbell J, Hoa NT, Bryant JE, Truc VNT, Kiet BT, Jombart T, Trung NV, Hien VB, Thwaites G, Baker S, Carrique-Mas J (2015) High Levels of Antimicrobial Resistance among Escherichia coli Isolates from Livestock Farms and Synanthropic Rats and Shrews in the Mekong Delta of Vietnam. Appl Environ Microbiol 81:812–820. https://doi.org/10.1128/AEM.03366-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto-Claudin A, Deem SL, Rodríguez C, Cano S, Moity N, Cabrera F, Esperón F (2021) Antimicrobial resistance in Galapagos tortoises as an indicator of the growing human footprint. Environ Pollut 284:117453. https://doi.org/10.1016/j.envpol.2021.117453

  • Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5. https://doi.org/10.1038/nrmicro1643

  • Ramey AM, Ahlstrom CA (2020) Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J Wildl Dis 56:1–15. https://doi.org/10.7589/2019-04-099

    Article  PubMed  Google Scholar 

  • Singer RS, Ward MP, Maldonado G (2006) Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol 4. https://doi.org/10.1038/nrmicro1553

  • Singh KS, Anand S, Dholpuria S, Sharma JK, Blankenfeldt W, Shouche Y (2021) Antimicrobial resistance dynamics and the one-health strategy: a review. Environ Chem Lett 19. https://doi.org/10.1007/s10311-021-01238-3

  • Stedt J, Bonnedahl J, Hernandez J, McMahon BJ, Hasan B, Olsen B, Drobni M, Waldenström J (2014) Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect Ecol Epidemiol 4:21565. https://doi.org/10.3402/iee.v4.21565

    Article  Google Scholar 

  • Swift BMC, Bennett M, Waller K, Dodd C, Murray A, Gomes RL, Humphreys B, Hobman JL, Jones MA, Whitlock SE, Mitchell LJ, Lennon RJ, Arnold KE (2019) Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci Total Environ 649. https://doi.org/10.1016/j.scitotenv.2018.08.180

  • Torres RT, Cunha M V, Caetano T, Mendo S, Serrano E, Fonseca C (2017) Antimicrobial resistance in wild boar in Europe: Present knowledge and future challenges. In: Ecology, conservation and management of wild pigs and peccaries. (ed. by M. Melletti & V. Meijaard). Cambridge University Press, Cambridge. ISBN:9781107187313.

  • Torres RT, Carvalho J, Cunha MV, Fonseca C (2019) Antimicrobial resistance and ecology: A dialog yet to begin. EcoHealth 16:402–403. https://doi.org/10.1007/s10393-019-01438-y

  • Torres RT, Carvalho J, Cunha MV, Serrano E, Palmeira JD, Fonseca C (2020) Temporal and geographical research trends of antimicrobial resistance in wildlife - A bibliometric analysis. One Health 11:100198. https://doi.org/10.1016/j.onehlt.2020.100198

  • Turner MG, Gardner RH (2015) Landscape ecology in theory and practice: Pattern and process. Springer, 29 ott 2015 - 482 pagine.

  • Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, Arnal A, Aberkane S, Jean-Pierre H, Gauthier-Clerc M, Thomas F, Renaud F (2016) Review: Antimicrobial resistance in wildlife. J Appl Ecol 53:519–529. https://doi.org/10.1111/1365-2664.12596

    Article  Google Scholar 

  • Wallace CC, Yund PO, Ford TE, Matassa KA, Bass AL (2013) Increase in antimicrobial resistance in bacteria isolated from stranded marine mammals of the Northwest Atlantic. EcoHealth 10:201–210. https://doi.org/10.1007/s10393-013-0842-6

    Article  PubMed  Google Scholar 

  • Walsh F, Richards P (2018) Antimicrobial resistance and one health. Microbiol Today 45:38–39

  • Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165. https://doi.org/10.1016/S1473-3099(12)70317-1

  • White A, Hughes JM (2019) Critical importance of a One Health approach to antimicrobial resistance. EcoHealth 16. https://doi.org/10.1007/s10393-019-01415-5

  • WHO (2021) Global antimicrobial resistance and use surveillance system (GLASS) report. Geneva

  • Williams NJ, Sherlock C, Jones TR, Clough HE, Telfer SE, Begon M, French N, Hart CA, Bennett M (2011) The prevalence of antimicrobial-resistant Escherichia coli in sympatric wild rodents varies by season and host. J Appl Microbiol 110:962–970. https://doi.org/10.1111/j.1365-2672.2011.04952.x

    Article  CAS  PubMed  Google Scholar 

  • Zanardi G, Iemmi T, Spadini C, Taddei S, Cavirani S, Cabassi CS (2020) Wild micromammals as bioindicators of antibiotic resistance in ecopathology in Northern Italy. Animals 10:1184. https://doi.org/10.3390/ani10071184

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z-C, Lin Z-J, Shuai X-Y, Zheng J, Meng L-X, Zhu L, Sun Y-J, Shang W-C, Chen H (2021) Temporal variation and sharing of antibiotic resistance genes between water and wild fish gut in a peri-urban river. J Environ Sci 103:12–19. https://doi.org/10.1016/j.jes.2020.10.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the owners and managers of the different capture sites for allowing us to conduct our study, in particular the regional nature reserve of Scamandre, the ornithological park of Pont de Gau and the ACCM Eau. We would also like to thank the MAVA foundation and the ECOSAN program of INEE-CNRS for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Vittecoq.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vittecoq, M., Elguero, E., Brazier, L. et al. Antimicrobial-Resistant Bacteria Carriage in Rodents According to Habitat Anthropization. EcoHealth 20, 84–92 (2023). https://doi.org/10.1007/s10393-023-01638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-023-01638-7

Keywords

Navigation