Skip to main content

Advertisement

Log in

ATP6V0D2, a subunit associated with proton transport, serves an oncogenic role in esophagus cancer and is correlated with epithelial–mesenchymal transition

  • Original Article
  • Published:
Esophagus Aims and scope Submit manuscript

Abstract

Background

The poor prognosis of esophagus cancer (EC) is mainly due to its high invasiveness and metastasis, so it is urgent to search effectively prognostic markers and explore their roles in the mechanism of metastasis.

Materials and methods

Based on the TCGA database, we downloaded the RNA-Seq for analyzing the expression of ATP6V0D2. QRT-PCR was used to test the mRNA levels of ATP6V0D2 in cell lines. Chi-square tests were used to evaluate the correlation between ATP6V0D2 and clinical characteristics. Prognostic values were determined by Kaplan–Meier methods and cox’s regression models. CCK-8 and clone formation assays were employed to evaluate the cell viability, and Transwell assay was implemented to determine the invasive and migratory abilities. Correlations between ATP6V0D2 and motion-related markers were analyzed by the GEPIA database and confirmed by western blot. Moreover, the relationship between ATP6V0D2 and molecules related to cell cycle and apoptosis was also determined by western blot.

Results

A significant increase was observed in 3 EC-related cell lines compared to the normal cell line. ATP6V0D2 has a connection with the poor prognosis and can be considered as an independent prognosticator for patients with EC. Besides, ATP6V0D2 can improve cells viability as well as invasive and migratory abilities. What’s more, downregulation of ATP6V0D2 notably enhanced E-cadherin expression, while decreased N-cadherin, Vimentin, and MMP9 expression, whereas overexpression of ATP6V0D2 presented the opposite outcomes. Furthermore, we found that silencing ATP6V0D2 led to a significant reduction on the protein expression of Cyclin D1, CDK4, Bcl-2, whereas resulted in a notable enhancement on the Bax level.

Conclusion

ATP6V0D2 might be an independent prognosticator for EC patients, and it possibly promotes tumorigenesis by regulating epithelial–mesenchymal transition, cell cycle and apoptosis-related markers, providing the possibility that ATP6V0D2 may be a novel biomarker for the therapeutic intervention of EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89. https://doi.org/10.3322/caac.21349.

    Article  PubMed  Google Scholar 

  3. Gupta B, Kumar N. Worldwide incidence, mortality and time trends for cancer of the oesophagus. Eur J Cancer Prev. 2017;26:107–18. https://doi.org/10.1097/cej.0000000000000249.

    Article  PubMed  Google Scholar 

  4. Lin Y, Totsuka Y, Shan B, et al. Esophageal cancer in high-risk areas of China: research progress and challenges. Ann Epidemiol. 2017;27:215–21. https://doi.org/10.1016/j.annepidem.2016.11.004.

    Article  PubMed  Google Scholar 

  5. Li JY, Liu BQ, Li GY, et al. Atlas of cancer mortality in the People's Republic of China. An aid for cancer control and research. Int J Epidemiol. 1981;10:127–33. https://doi.org/10.1093/ije/10.2.127.

    Article  CAS  PubMed  Google Scholar 

  6. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32. https://doi.org/10.3322/caac.21338.

    Article  PubMed  Google Scholar 

  7. Incarbone R, Bonavina L, Szachnowicz S, et al. Rising incidence of esophageal adenocarcinoma in Western countries: is it possible to identify a population at risk? Dis Esophagus. 2000;13:275–8. https://doi.org/10.1046/j.1442-2050.2000.00132.x.

    Article  CAS  PubMed  Google Scholar 

  8. Lagergren J, Smyth E, Cunningham D, et al. Oesophageal cancer. Lancet. 2017;390:2383–96. https://doi.org/10.1016/s0140-6736(17)31462-9.

    Article  PubMed  Google Scholar 

  9. Shang L, Wang M. Molecular alterations and clinical relevance in esophageal squamous cell carcinoma. Front Med. 2013;7:401–10. https://doi.org/10.1007/s11684-013-0286-y.

    Article  PubMed  Google Scholar 

  10. Lambert R. Endoscopic detection and treatment of early esophageal cancer: a critical analysis. Endoscopy. 1995;27:12–8. https://doi.org/10.1055/s-2007-1005626(discussion 58-9).

    Article  PubMed  Google Scholar 

  11. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52. https://doi.org/10.1056/NEJMra035010.

    Article  CAS  PubMed  Google Scholar 

  12. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29. https://doi.org/10.1038/nrm2272.

    Article  CAS  PubMed  Google Scholar 

  13. Marshansky V, Rubinstein JL, Gruber G. Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta. 2014;1837:857–79. https://doi.org/10.1016/j.bbabio.2014.01.018.

    Article  CAS  PubMed  Google Scholar 

  14. Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys. 2008;476:33–42. https://doi.org/10.1016/j.abb.2008.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qin A, Cheng TS, Pavlos NJ, et al. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44:1422–35. https://doi.org/10.1016/j.biocel.2012.05.014.

    Article  CAS  PubMed  Google Scholar 

  16. Stransky L, Cotter K, Forgac M. The function of V-ATPases in cancer. Physiol Rev. 2016;96:1071–91. https://doi.org/10.1152/physrev.00035.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kane PM. Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci. 2012;13:117–23. https://doi.org/10.2174/138920312800493142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cotter K, Stransky L, McGuire C, et al. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 2015;40:611–22. https://doi.org/10.1016/j.tibs.2015.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Capecci J, Forgac M. The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem. 2013;288:32731–41. https://doi.org/10.1074/jbc.M113.503771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirata T, Iwamoto-Kihara A, Sun-Wada GH, et al. Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem. 2003;278:23714–9. https://doi.org/10.1074/jbc.M302756200.

    Article  CAS  PubMed  Google Scholar 

  21. Fukamachi T, Ikeda S, Saito H, et al. Expression of acidosis-dependent genes in human cancer nests. Mol Clin Oncol. 2014;2:1160–6. https://doi.org/10.3892/mco.2014.344.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang J, Guo F, Yuan L, et al. Elevated expression of the V-ATPase D2 subunit triggers increased energy metabolite levels in Kras(G12D) -driven cancer cells. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.28448.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morimura T, Fujita K, Akita M, et al. The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr Surg Int. 2008;24:1087–94. https://doi.org/10.1007/s00383-008-2229-2.

    Article  PubMed  Google Scholar 

  24. Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12. https://doi.org/10.1016/s0140-6736(12)60643-6.

    Article  PubMed  Google Scholar 

  25. Zhang JX, Tong ZT, Yang L, et al. PITX2: a promising predictive biomarker of patients' prognosis and chemoradioresistance in esophageal squamous cell carcinoma. Int J Cancer. 2013;132:2567–77. https://doi.org/10.1002/ijc.27930.

    Article  CAS  PubMed  Google Scholar 

  26. Ge XS, Ma HJ, Zheng XH, et al. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 2013;104:1675–82. https://doi.org/10.1111/cas.12296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Zhang BZ, Qin YR, et al. CD68 and interleukin 13, prospective immune markers for esophageal squamous cell carcinoma prognosis prediction. Oncotarget. 2016;7:15525–38. https://doi.org/10.18632/oncotarget.6900.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zeidel ML, Silva P, Seifter JL. Intracellular pH regulation and proton transport by rabbit renal medullary collecting duct cells. Role of plasma membrane proton adenosine triphosphatase. J Clin Investig. 1986;77:113–20. https://doi.org/10.1172/jci112264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith AN, Borthwick KJ, Karet FE. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H(+)-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene. 2002;297:169–77. https://doi.org/10.1016/s0378-1119(02)00884-3.

    Article  CAS  PubMed  Google Scholar 

  30. Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2alpha-mediated tumor progression. J Clin Investig. 2019;129:631–46. https://doi.org/10.1172/jci123027.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hernandez A, Serrano G, Herrera-Palau R, et al. Intraorganellar acidification by V-ATPases: a target in cell proliferation and cancer therapy. Recent Pat Anticancer Drug Discov. 2010;5:88–98. https://doi.org/10.2174/157489210790936216.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Zaguilan R, Lynch RM, Martinez GM, et al. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol. 1993;265:C1015–29. https://doi.org/10.1152/ajpcell.1993.265.4.C1015.

    Article  PubMed  Google Scholar 

  33. Finbow ME, Harrison MA. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J. 1997;324(Pt 3):697–712. https://doi.org/10.1042/bj3240697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hinton A, Bond S, Forgac M. V-ATPase functions in normal and disease processes. Pflugers Arch. 2009;457:589–98. https://doi.org/10.1007/s00424-007-0382-4.

    Article  CAS  PubMed  Google Scholar 

  35. McGuire C, Cotter K, Stransky L, et al. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 2016;1857:1213–8. https://doi.org/10.1016/j.bbabio.2016.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komatsu S, Shioaki Y, Ichikawa D, et al. Survival and clinical evaluation of salvage operation for cervical lymph node recurrence in esophageal cancer. Hepatogastroenterology. 2005;52:796–9. https://doi.org/10.1364/JOSAA.16.002136.

    Article  PubMed  Google Scholar 

  37. Li S, Qin X, Chai S, et al. Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells. Sci Rep. 2016;6:21713. https://doi.org/10.1038/srep21713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung S, Hong HK, Bo YO, et al. Abstract LB-186: Twist-1 overexpression modulates cancer progression according to the microsatellite instability status in colorectal cancer cell lines. Cancer Res. 2014;74:LB-186–LB-186. https://doi.org/10.1158/1538-7445.AM2014-LB-186.

    Article  Google Scholar 

  39. Yeung KT, Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11:28–39. https://doi.org/10.1002/1878-0261.12017.

    Article  PubMed  Google Scholar 

  40. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Tang J, Zhan W, et al. CBX8 suppresses tumor metastasis via repressing snail in esophageal squamous cell carcinoma. Theranostics. 2017;7:3478–88. https://doi.org/10.7150/thno.20717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Li M, Zhan Y, et al. Down-regulation of POTEG predicts poor prognosis in esophageal squamous cell carcinoma patients. Mol Carcinog. 2018;57:886–95. https://doi.org/10.1002/mc.22809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He X, Xu X, Zhu G, et al. Circulating uPA as a potential prognostic biomarker for resectable esophageal squamous cell carcinoma. Medicine. 2019;98:e14717. https://doi.org/10.1097/md.0000000000014717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia T, Tong S, Fan K, et al. XBP1 induces MMP-9 expression to promote proliferation and invasion in human esophageal squamous cell carcinoma. Am J Cancer Res. 2016;6:2031–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto H, Vinitketkumnuen A, Adachi Y, et al. Association of matrilysin-2 (MMP-26) expression with tumor progression and activation of MMP-9 in esophageal squamous cell carcinoma. Carcinogenesis. 2004;25:2353–60. https://doi.org/10.1093/carcin/bgh270.

    Article  CAS  PubMed  Google Scholar 

  46. Pachmayr E, Treese C, Stein U. Underlying mechanisms for distant metastasis—molecular biology. Visc Med. 2017;33:11–20. https://doi.org/10.1159/000454696.

    Article  PubMed  PubMed Central  Google Scholar 

  47. John RR, Malathi N, Ravindran C, et al. Mini review: multifaceted role played by cyclin D1 in tumor behavior. Indian J Dent Res. 2017;28:187–92. https://doi.org/10.4103/ijdr.IJDR_697_16.

    Article  PubMed  Google Scholar 

  48. Gao YB, Chen ZL, Li JG, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102. https://doi.org/10.1038/ng.3076.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang H, Xia J, Wang K, et al. Serum autoantibodies in the early detection of esophageal cancer: a systematic review. Tumour Biol. 2015;36:95–109. https://doi.org/10.1007/s13277-014-2878-9.

    Article  CAS  PubMed  Google Scholar 

  50. Wei W, Wang Y, Yu X, et al. Expression of TP53, BCL-2, and VEGFA genes in esophagus carcinoma and its biological significance. Med Sci Monit. 2015;21:3016–22. https://doi.org/10.12659/msm.894640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Appelman HD, Matejcic M, Parker MI, et al. Progression of esophageal dysplasia to cancer. Ann N Y Acad Sci. 2014;1325:96–107. https://doi.org/10.1111/nyas.12523.

    Article  PubMed  Google Scholar 

  52. Xu XL, Zheng WH, Tao KY, et al. p53 is an independent prognostic factor in operable esophageal squamous cell carcinoma: a large-scale study with a long follow-up. Med Oncol. 2014;31:257. https://doi.org/10.1007/s12032-014-0257-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ling Wang.

Ethics declarations

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declared that there is no conflict of interest related to this report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10388_2020_735_MOESM1_ESM.tif

Supplementary figure 1 V-ATPase inhibitor suppress the EC cells viability. CCK-8 assays were used to determine the ECA109 cells proliferation after treated with Bafilomycin A1 and control. **p<0.01 vs. control group. (TIF 18 kb)

10388_2020_735_MOESM2_ESM.tif

Supplementary figure 2 V-ATPase inhibitor suppressed EMT process and MMP9 level. Western blot analysis was used to determine the changes of E-cadherin/N-cadherin/Vimentin/MMP9 after treated with Bafilomycin A1 and control. **p<0.01 vs. control group. (TIF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Liu, DM., Ji, W. et al. ATP6V0D2, a subunit associated with proton transport, serves an oncogenic role in esophagus cancer and is correlated with epithelial–mesenchymal transition. Esophagus 17, 456–467 (2020). https://doi.org/10.1007/s10388-020-00735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10388-020-00735-8

Keywords

Navigation