Skip to main content

Advertisement

Log in

Analysis of temporal changes in thickness from conjunctiva to sclera after plication of the medial rectus muscle measured by anterior segment optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated long-term changes in conjunctival bulge after medial rectus muscle (MR) tightening using the plication method.

Study design

Retrospective and observational.

Methods

Patients who underwent MR plication for exotropia from December 2016–March 2020 at Okayama University Hospital were included. Thirty two eyes of 27 patients were enrolled. The thickness from the conjunctiva to sclera (TCS) at the limbus and insertion sites were measured using anterior segment optical coherence tomography preoperatively and 1 month, 4 months, and 12 months postoperatively. Correlations between the 1- and 12 month postoperative TCS and amount of MR tightening were analyzed.

Results

Preoperative and 4 month postoperative TCS at the limbus site were not significantly different (P=0.07). The 12 month postoperative TCS at the insertion site was significantly thinner than at 1 month postoperative (P<0.01), although significantly thicker than the preoperative TCS (P<0.01). No significant correlations were found between the amount of MR tightening (in mm) and 1- or 12 month postoperative TCS at the limbus (P=0.62 and P=0.98, respectively) and insertion (P=0.50 and P=0.24, respectively) sites.

Conclusion

The TCS at the insertion site peaked at 1 month postoperatively, continued to decrease for longer than 4 months postoperatively, continuing until 12 months postoperatively. The TCS at the insertion site 12 months postoperatively is thicker than preoperatively. The TCS at both the limbus and insertion sites was not related to the amount of medial rectus muscle tightening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mojon DS. Comparison of a new, minimally invasive strabismus surgery technique with the usual limbal approach for rectus muscle recession and plication. Br J Ophthalmol. 2007;91:76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaudhuri Z, Demer JL. Surgical outcomes following rectus muscle plication: a potentially reversible, vessel-sparing alternative to resection. JAMA Ophthalmol. 2014;132:579–85.

    Article  PubMed  Google Scholar 

  3. Kimura Y, Kimura T. Comparative study of plication-recession versus resection-recession in unilateral surgery for intermittent exotropia. Jpn J Ophthalmol. 2017;61:286–91.

    Article  PubMed  Google Scholar 

  4. Sonwani P, Amitava AK, Khan AA, Gupta S, Grover S, Kumari N. Plication as an alternative to resection in horizontal strabismus: a randomized clinical trial. Indian J Ophthalmol. 2017;65:853–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sukhija J, Kaur S. Comparison of plication and resection in large-angle exotropia. J AAPOS. 2018;22:348–51.

    Article  PubMed  Google Scholar 

  6. Leffler CT. Surgical outcomes following rectus muscle plication versus resection combined with antagonist muscle recession for basic horizontal strabismus. J AAPOS. 2018;22:332.

    Article  PubMed  Google Scholar 

  7. Anand K, Baindur S, Dhiman S, Dutta P, Mishra M, Rastogi A, et al. Surgical outcomes of plication versus resection in basic type of intermittent exotropia. Can J Ophthalmol. 2020;55:323–9.

    Article  PubMed  Google Scholar 

  8. Issaho DC, de Freitas D, Cronemberger MF. Plication versus resection in horizontal strabismus surgery: a systematic review with meta-analysis. J Ophthalmol. 2020. https://doi.org/10.1155/2020/5625062.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rajavi Z, Arabikhalilabad S, Sabbaghi H, Kheiri B, Abdi S. Comparison of medial rectus resection and plication in exotropic patients. Int Ophthalmol. 2021;41:11–9.

    Article  PubMed  Google Scholar 

  10. Fukuda S, Kawana K, Yasuno Y, Oshika T. Anterior ocular biometry using 3-dimensional optical coherence tomography. Ophthalmology. 2009;116:882–9.

    Article  PubMed  Google Scholar 

  11. Fukuda S, Ueno Y, Fujita A, Mori H, Tasaki K, Murakami T, et al. Comparison of anterior segment and lens biometric measurements in patients with cataract. Graefes Arch Clin Exp Ophthalmol. 2020;258:137–46.

    Article  PubMed  Google Scholar 

  12. Lai I, Mak H, Lai G, Yu M, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology. 2013;120:1144–9.

    Article  PubMed  Google Scholar 

  13. Fukuda S, Beheregaray S, Kasaragod D, Hoshi S, Kishino G, Ishii K, et al. Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:5200–6.

    Article  PubMed  Google Scholar 

  14. Narita A, Morizane Y, Miyake T, Seguchi J, Baba T, Shiraga F. Characteristics of early filtering blebs that predict successful trabeculectomy identified via three-dimensional anterior segment optical coherence tomography. Br J Ophthalmol. 2018;102:796–801.

    Article  PubMed  Google Scholar 

  15. Narita A, Morizane Y, Miyake T, Seguchi J, Baba T, Shiraga F. Characteristics of successful filtering blebs at 1 year after trabeculectomy using swept-source three-dimensional anterior segment optical coherence tomography. Jpn J Ophthalmol. 2017;61:253–9.

    Article  PubMed  Google Scholar 

  16. Narita A, Morizane Y, Miyake T, Sugihara K, Ishikawa T, Seguchi J, et al. Impact of cataract surgery on filtering bleb morphology identified via swept-source 3-dimensional anterior segment optical coherence tomography. J Glaucoma. 2019;28:433–9.

    Article  PubMed  Google Scholar 

  17. Salcedo-Villanueva G, Paciuc-Beja M, Harasawa M, Velez-Montoya R, Olson JL, Oliver SC, et al. Identification and biometry of horizontal extraocular muscle tendons using optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2015;253:477–85.

    Article  PubMed  Google Scholar 

  18. Jayaraj S, Singh A, Agrawal A, Panyala R, Samanta R, Mittal SK, et al. Accuracy of anterior segment optical coherence tomography for pre-operative localization of insertions of extraocular recti muscles. Eur J Ophthalmol. 2021;31:2353–9.

    Article  PubMed  Google Scholar 

  19. Rossetto JD, Cavuoto KM, Allemann N, McKeown CA, Capó H. Accuracy of optical coherence tomography measurements of rectus muscle insertions in adult patients undergoing strabismus surgery. Am J Ophthalmol. 2017;176:236–43.

    Article  PubMed  Google Scholar 

  20. Liu X, Wang F, Xiao Y, Ye X, Hou L. Measurement of the limbus-insertion distance in adult strabismus patients with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:8370–3.

    Article  PubMed  Google Scholar 

  21. Suzuki H, Hikoya A, Komori M, Inagaki R, Haseoka T, Arai S, et al. Changes in conjunctival–scleral thickness after strabismus surgery measured with anterior segment optical coherence tomography. Jpn J Ophthalmol. 2018;62:554–9.

    Article  PubMed  Google Scholar 

  22. Shibata K, Fujiwara A, Hamasaki I, Shimizu T, Kono R, Kanenaga K, et al. Shape analysis of rectus extraocular muscles with age and axial length using anterior segment optical coherence tomography. PLoS ONE. 2020;15: e0243382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaur S, Sukhija J, Korla S, Sachdeva K, Chaurasia S, Raj S. Comparison of the swept-source anterior segment optical coherence tomography and wide-field ultrasound biomicroscopy for imaging previously operated horizontal extraocular muscles. J AAPOS. 2021;25:212.e1-212.e6.

    Article  PubMed  Google Scholar 

  24. Rao H, Singh V, Plummer L, Marsh JD. Pathological examination of plicated medial rectus muscle for treatment of re-recurrent exotropia. J Pediatr Ophthalmol Strabismus. 2018;55:e20–1.

    Article  PubMed  Google Scholar 

  25. Ludwig IH, Chow AY. Scar remodeling after strabismus surgery. J AAPOS. 2000;4:326–33.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki H, Hikoya A, Inagaki R, Haseoka T, Arai S, Takagi Y, et al. Medial rectus muscle resection versus plication: A comparison of conjunctival-scleral thickness measured by AS-OCT. J Pediatr Ophthalmol Strabismus. 2022;59:274–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS KAKENHI, grant nos. JP23791987 and JP26861450.We would like to thank Editage for English-language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hamasaki.

Ethics declarations

Conflicts of interest

T. Shimizu, None; I. Hamasaki, None; K. Shibata, None; S. Morisawa, None; R. Kono, None; K. Kanenaga, None; Y. Morizane, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author: Ichiro Hamasaki

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Hamasaki, I., Shibata, K. et al. Analysis of temporal changes in thickness from conjunctiva to sclera after plication of the medial rectus muscle measured by anterior segment optical coherence tomography. Jpn J Ophthalmol 67, 612–617 (2023). https://doi.org/10.1007/s10384-023-01006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-023-01006-6

Keywords

Navigation