Skip to main content

Advertisement

Log in

Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the additive effects of orthokeratology (OK) and atropine 0.01% ophthalmic solution, both of which are effective procedures to slow axial elongation in children with myopia.

Study design

Prospective randomized clinical trial.

Methods

Japanese children aged 8–12 years with a spherical equivalent refractive error of − 1.00 to − 6.00 diopters were included. A total of 41 participants who had been wearing the OK lenses successfully for 3 months were randomly allocated into two groups to receive either the combination of OK and atropine 0.01% ophthalmic solution (combination group) or monotherapy with OK (monotherapy group). Subjects in the combination group started to use atropine 0.01% ophthalmic solution once nightly from 3 months after the start of OK. Axial length was measured every 3 months using non-contact laser interferometry (IOLMaster), and the axial length measurement at month 3 of OK therapy was used as the baseline value in both groups. The increase in axial length over 1 year was compared between the two groups.

Results

A total of 40 consecutive subjects (20 subjects in the combination group and 20 in the monotherapy group) were followed for 1 year. The increase in axial length over 1 year was 0.09 ± 0.12 mm in the combination group and 0.19 ± 0.15 mm in the monotherapy group (P = 0.0356, unpaired t test).

Conclusion

During the 1-year follow-up, the combination of OK and atropine 0.01% ophthalmic solution was more effective in slowing axial elongation than OK monotherapy in children with myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  PubMed  CAS  Google Scholar 

  2. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739–48.

    Article  PubMed  Google Scholar 

  3. Vitale S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol. 2009;127:1632–9.

    Article  PubMed  Google Scholar 

  4. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singap. 2004;33:27–33.

    PubMed  CAS  Google Scholar 

  5. Matsumura H, Hirai H. Prevalence of myopia and refractive changes in students from 3 to 17 years of age. Surv Ophthalmol. 1999;44:S109–15.

    Article  PubMed  Google Scholar 

  6. Saw SM, Chua WH, Gazzard G, Koh D, Tan DTH, Stone RA. Eye growth changes in myopic children in Singapore. Br J Ophthalmol. 2005;89:1489–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hyman L, Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle W, et al. Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Arch Ophthalmol. 2005;123:977–87.

    Article  PubMed  Google Scholar 

  8. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

    Article  PubMed  Google Scholar 

  9. Chua SY, Sabanayagam C, Cheung YB, Chia A, Valenzuela RK, Tan D, et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthalmic Physiol Opt. 2016;36:388–94.

    Article  PubMed  Google Scholar 

  10. Kimura S, Hasebe S, Miyata M, Hamasaki I, Ohtsuki H. Axial length measurement using partial coherence interferometry in myopic children: repeatability of the measurement and comparison with refractive components. Jpn J Ophthalmol. 2007;51:105–10.

    Article  PubMed  Google Scholar 

  11. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31:622–60.

    Article  PubMed  CAS  Google Scholar 

  12. Asakuma T, Yasuda M, Ninomiya T, Noda Y, Arakawa S, Hashimoto S, et al. Prevalence and risk factors for myopic retinopathy in a Japanese population The Hisayama Study. Ophthalmology. 2012;119:1760–5.

    Article  PubMed  Google Scholar 

  13. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113:2285–91.

    Article  PubMed  Google Scholar 

  14. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119:347–54.

    Article  PubMed  Google Scholar 

  15. Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) Study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53:7077–85.

    Article  PubMed  Google Scholar 

  16. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53:5060–5.

    Article  PubMed  Google Scholar 

  17. Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913–9.

    Article  PubMed  Google Scholar 

  18. Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170–4.

    Article  PubMed  Google Scholar 

  19. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93:1181–5.

    Article  PubMed  CAS  Google Scholar 

  20. Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30:71–80.

    Article  PubMed  Google Scholar 

  21. Huang JH, Wen DZ, Wang QM, McAlinden C, Flitcroft I, Chen HS, et al. Efficacy comparison of 16 interventions for myopia control in children a network meta-analysis. Ophthalmology. 2016;123:697–708.

    Article  PubMed  Google Scholar 

  22. Walline JJ. Myopia control: a review. Eye Contact Lens. 2016;42:3–8.

    Article  PubMed  Google Scholar 

  23. Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology. 2009;116:572–9.

    Article  PubMed  Google Scholar 

  24. Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2 myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123:391–9.

    Article  PubMed  Google Scholar 

  25. Chia A, Chua WH, Wen L, Fong A, Goon YY, Tan D. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol. 2014;157:451–7.

    Article  PubMed  CAS  Google Scholar 

  26. Chan B, Cho P, Cheung SW. Repeatability and agreement of two A-scan ultrasonic biometers and IOLMaster in non-orthokeratology subjects and post-orthokeratology children. Clin Exp Optom. 2006;89:160–8.

    Article  PubMed  Google Scholar 

  27. Carkeet A, Saw SM, Gazzard G, Tang W, Tan DTH. Repeatability of IOLMaster biometry in children. Optom Vis Sci. 2004;81:829–34.

    Article  PubMed  Google Scholar 

  28. Gallego P, Martinez-Garcia C, Perez-Merino P, Ibares-Frias L, Mayo-Iscar A, Merayo-Lloves J. Scleral changes induced by atropine in chicks as an experimental model of myopia. Ophthalmic Physiol Opt. 2012;32:478–84.

    Article  PubMed  Google Scholar 

  29. McBrien NA, Arumugam B, Gentle A, Chow A, Sahebjada S. The M4 muscarinic antagonist MT-3 inhibits myopia in chick: evidence for site of action. Ophthalmic Physiol Opt. 2011;31:529–39.

    Article  PubMed  Google Scholar 

  30. Kang PL, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88:476–82.

    Article  PubMed  Google Scholar 

  31. Smith EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49:2386–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hiraoka T, Kakita T, Okamoto F, Oshika T. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology. 2015;122:93–100.

    Article  PubMed  Google Scholar 

  33. Mathur A, Atchison DA. Effect of orthokeratology on peripheral aberrations of the eye. Optom Vis Sci. 2009;86:476–84.

    Article  Google Scholar 

  34. Alharbi A, Swarbrick HA. The effects of overnight orthokeratology lens wear on corneal thickness. Invest Ophthalmol Vis Sci. 2003;44:2518–23.

    Article  PubMed  Google Scholar 

  35. Swarbrick HA, Wong G, O’Leary DJ. Corneal response to orthokeratology. Optom Vis Sci. 1998;75:791–9.

    Article  PubMed  CAS  Google Scholar 

  36. Soni PS, Nguyen TT, Bonanno JA. Overnight orthokeratology: refractive and corneal recovery after discontinuation of reverse-geometry lenses. Eye Contact Lens. 2004;30:254–62 (discussion 63-4).

    Article  PubMed  Google Scholar 

  37. Nichols JJ, Marsich MM, Nguyen M, Barr JT, Bullimore MA. Overnight orthokeratology. Optom Vis Sci. 2000;77:252–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sieg JW, Robinson JR. Mechanistic studies on transcorneal permeation of pilocarpine. J Pharm Sci. 1976;65:1816–22.

    Article  PubMed  CAS  Google Scholar 

  39. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  PubMed  CAS  Google Scholar 

  40. Li SM, Kang MT, Wu SS, Liu LR, Li H, Chen Z, et al. Efficacy, safety and acceptability of orthokeratology on slowing axial elongation in myopic children by meta-analysis. Curr Eye Res. 2016;41:600–8.

    Article  PubMed  Google Scholar 

  41. Williams KM, Bentham GC, Young IS, McGinty A, McKay GJ, Hogg R, et al. Association between myopia, ultraviolet B radiation exposure, serum vitamin D concentrations, and genetic polymorphisms in vitamin D metabolic pathways in a Multicountry European Study. JAMA Ophthalmol. 2017;135:47–53.

    Article  PubMed  Google Scholar 

  42. Torii H, Kurihara T, Seko Y, Negishi K, Ohnuma K, Inaba T, et al. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine. 2017;15:210–9.

    Article  PubMed  Google Scholar 

  43. Torii H, Ohnuma K, Kurihara T, Tsubota K, Negishi K. Violet light transmission is related to myopia progression in adult high myopia. Sci Rep. 2017;7:14523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol. 2017;95:551–66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Shigeto Shimmura, MD (Keio University School of Medicine) for English editing, and J-SENSATION (Jichi Medical University) for their editing support. This study was supported by JSPS KAKENHI Grant Number JP26462646 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozomi Kinoshita.

Ethics declarations

Conflicts of interest

N. Kinoshita, None; Y. Konno, None; N. Hamada, None; Y. Kanda, None; M. S. -Tomita, None; A. Kakehashi, None.

Additional information

Corresponding author: Nozomi Kinoshita

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, N., Konno, Y., Hamada, N. et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Jpn J Ophthalmol 62, 544–553 (2018). https://doi.org/10.1007/s10384-018-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-0608-3

Keywords

Navigation