Skip to main content
Log in

Tear-film-oriented diagnosis for dry eye

  • Forefront Review
  • Organizer: Mitsuru Sawa, MD, PhD, Kohji Nishida, MD, PhD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Tear-film (TF) stability protects the ocular surface epithelium from desiccation and is ensured via cooperation between the ocular surface components including constituents of the TF and ocular surface epithelium. Thus, when those components are insufficient or impaired, the TF breakup that initiates dry eye occurs. Recently, new, commercially available eye drops have appeared in Japan that enable TF stabilization via targeted supplementation of deficient ocular surface components. Hence, a new layer-by-layer diagnosis and treatment concept for dry eye, termed tear-film-oriented diagnosis and tear-film-oriented therapy (TFOD and TFOT, respectively), have emerged and become widely accepted in Asian countries and beyond. TFOD is a diagnostic method for dry eye based on the TF dynamics and breakup patterns (BUPs), through which dry-eye subtypes, including aqueous-deficient dry eye, decreased-wettability dry eye, and increased-evaporation dry eye, are diagnosed. BUPs and/or each diagnosed dry-eye subtype can, in a layer-by-layer fashion, reveal the insufficient ocular surface components responsible for the TF breakup. Using these data, the optimal topical TFOT to treat dry eye can be proposed by addressing the TF breakup via the supplementation of the insufficient components. In Japan, TF breakup is now regarded as a visible core mechanism of dry eye, and abnormal breakup time (ie, ≤ 5 seconds) and symptoms are currently considered part of the diagnostic criteria for dry eye. In this review, the importance of TF instability as a core manifestation of dry eye, the molecular mechanism of TF breakup, the concept of TFOD, and the methods for implementing TFOD for TFOT are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This scheme can be cited from the homepage (http://www.dryeye.ne.jp/index.html) of the Dry Eye Society in Japan

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yokoi N, Bron AJ, Georgiev GA. The precorneal tear film as a fluid shell: the effect of blinking and saccades on tear film distribution and dynamics. Ocul Surf. 2014;12:252–6.

    Article  PubMed  Google Scholar 

  2. King-Smith PE, Fink BA, Hill RM, Koelling K, Tiffany J. The thickness of the tear film. Curr Eye Res. 2004;29:357–68.

    Article  PubMed  Google Scholar 

  3. Craig JP, Tomlinson A. Importance of the lipid layer in human tear film stability and evaporation. Optom Vis Sci. 1997;74:8–13.

    Article  PubMed  CAS  Google Scholar 

  4. Golding TR, Bruce AS, Mainstone JC. Relationship between tear-meniscus parameters and tear-film breakup. Cornea. 1997;16:649–61.

    Article  PubMed  CAS  Google Scholar 

  5. Gibson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78:379–88.

    Article  CAS  Google Scholar 

  6. Lemp MA, Dohlman CH, Holly FJ. Corneal desiccation despite normal tear volume. Ann Ophthalmol. 1970;284:258–61.

    Google Scholar 

  7. Argüeso P. Glycobiology of the ocular surface: mucins and lectins. Jpn J Ophthalmol. 2013;57:150–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yokoi N, Georgiev GA. Tear-film-oriented diagnosis and therapy for dry eye. In: Yokoi N, editor. Dry eye syndrome: basic and clinical perspectives. London: Future Medicine; 2013. p. 96–108.

    Chapter  Google Scholar 

  9. Yokoi N, Georgiev GA, Kato H, Komuro A, Sonomura Y, Sotozono C, et al. Classification of fluorescein breakup patterns: a novel method of differential diagnosis for dry eye. Am J Ophthalmol. 2017;180:72–85.

    Article  PubMed  Google Scholar 

  10. Yokoi N, Takehisa Y, Kinoshita S. Correlation of tear lipid layer interference patterns with the diagnosis and severity of dry eye. Am J Ophthalmol. 1996;122:818–24.

    Article  PubMed  CAS  Google Scholar 

  11. Goto E, Ishida R, Kaido M, Dogru M, Matsumoto Y, Kojima T, et al. Optical aberrations and visual disturbances associated with dry eye. Ocul Surf. 2006;4:207–13.

    Article  PubMed  Google Scholar 

  12. Koh S, Maeda N, Kuroda T, Hori Y, Watanabe H, Fujikado T, et al. Effect of tear film break-up on higher-order aberrations measured with wavefront sensor. Am J Ophthalmol. 2002;134:115–7.

    Article  PubMed  Google Scholar 

  13. Toda I, Shimazaki J, Tsubota K. Dry eye with only decreased tear break-up time is sometimes associated with allergic conjunctivitis. Ophthalmology. 1995;102:302–9.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto Y, Yokoi N, Higashihara H, Inagaki K, Sonomura Y, Komuro A, et al. Clinical characteristics of short tear film breakup time (BUT)-type dry eye. Nippon Ganka Gakkai Zasshi. 2012;116:1137–43 (in Japanese).

    PubMed  Google Scholar 

  15. Shimazaki J, Dry Eye Research Group. Definition and diagnosis of dry eye 2006. Atarashii Ganka. 2007;4:181–4 (in Japanese).

    Google Scholar 

  16. Yokoi N, Uchino M, Uchino Y, Dogru M, Kawashima M, Komuro A, et al. Importance of tear film instability in dry eye disease in office workers using visual display terminals: the Osaka study. Am J Ophthalmol. 2015;159:748–54.

    Article  PubMed  Google Scholar 

  17. Shimazaki J, Yokoi N, Watanabe H, Amano S, Ohashi Y, Kinoshita S, et al. Definition and diagnosis of dry eye in Japan, 2016. Atarashii Ganka. 2017;34:309–13 (in Japanese).

    Google Scholar 

  18. Tsubota K, Yokoi N, Shimazaki J, Watanabe H, Dogru M, Yamada M, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia Dry Eye Society. Ocul Surf. 2017;15:65–76.

    Article  PubMed  Google Scholar 

  19. Yokoi N, Kato H, Kinoshita S. Facilitation of tear fluid secretion by 3% diquafosol ophthalmic solution in normal human eyes. Am J Ophthalmol. 2014;157:85–92.

    Article  PubMed  CAS  Google Scholar 

  20. Yokoi N, Kato H, Kinoshita S. The increase of aqueous tear volume by diquafosol sodium in dry-eye patients with Sjögren’s syndrome: a pilot study. Eye (Lond). 2016;30:857–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shigeyasu C, Yamada M, Akune Y. Influence of ophthalmic solutions on tear components. Cornea. 2016;35(Suppl):S71–7.

    Article  PubMed  Google Scholar 

  22. Takaoka-Shichijo Y, Nakamura N. Stimulatory effect of diquafosol tetrasodium in the expression of membrane-binding mucin genes in cultured human corneal epithelial cells. Atarashii Ganka. 2011;28:425–9 (in Japanese).

    CAS  Google Scholar 

  23. Shimazaki-Den S, Iseda H, Dogru M, Shimazaki J. Effects of diquafosol sodium eye drops on tear film stability in short BUT type of dry eye. Cornea. 2013;32:1120–5.

    Article  PubMed  Google Scholar 

  24. Kase S, Shinohara T, Kase M. Effect of topical rebamipide on human conjunctival goblet cells. JAMA Ophthalmol. 2014;132:1021–2.

    Article  PubMed  Google Scholar 

  25. Itoh S, Itoh K, Shinohara H. Regulation of human corneal epithelial mucins by rebamipide. Curr Eye Res. 2014;39:133–41.

    Article  PubMed  CAS  Google Scholar 

  26. Wong H, Fatt I, Radke CJ. Deposition and thinning of the human tear film. J Colloid Interface Sci. 1996;184:44–51.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma A, Tiwari S, Khanna R, Tiffany JM. Hydrodynamics of meniscus-induced thinning of the tear film. Adv Exp Med Biol. 1998;438:425–31.

    Article  PubMed  CAS  Google Scholar 

  28. Jones MB, Please CP, McElwain DL, Fulford GR, Roberts AP, Collins MJ. Dynamics of tear film deposition and draining. Math Med Biol. 2005;22:265–88.

    Article  PubMed  CAS  Google Scholar 

  29. Creech JL, Do LT, Fatt I, Radke CJ. In vivo tear-film thickness determination and implications for tear-film stability. Curr Eye Res. 1998;17:1058–66.

    Article  PubMed  CAS  Google Scholar 

  30. Afsar-Siddiqui AB, Luckham PF, Matar OK. The spreading of surfactant solutions on thin liquid films. Adv Colloid Interface Sci. 2003;106:183–236.

    Article  PubMed  CAS  Google Scholar 

  31. Berger RE, Corrsin S. A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J Biomech. 1974;7:225–38.

    Article  PubMed  CAS  Google Scholar 

  32. King-Smith PE, Reuter KS, Braun RJ, Nichols JJ, Nichols KK. Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer images. Invest Ophthal Vis Sci. 2013;54:4900–9.

    Article  PubMed  Google Scholar 

  33. Yokoi N, Yamada H, Mizukusa Y, Bron AJ, Tiffany JM, Kato T, et al. Rheology of tear film lipid layer spread in normal and aqueous tear-deficient dry eyes. Invest Ophthalmol Vis Sci. 2008;49:5319–24.

    Article  PubMed  Google Scholar 

  34. Bull JL, Grotberg JB. Surfactant spreading on thin viscous films: film thickness evolution and periodic wall stretch. Exp Fluids. 2003;34:1–15.

    Article  CAS  Google Scholar 

  35. Zhang YL, Matar OK, Craster RV. Analysis of tear film rupture: effect of non-Newtonian rheology. J Colloid Interface Sci. 2003;262:130–48.

    Article  PubMed  CAS  Google Scholar 

  36. King-Smith PE, Fink BA, Hill RM. Evaporation from the human tear film studied by interferometry. Adv Exp Med Biol. 2002;506(Pt A):425–9.

    Article  PubMed  CAS  Google Scholar 

  37. Benedetto DA, Clinch TE, Laibson PR. In vivo observation of tear dynamics using fluorophotometry. Arch Ophthalmol. 1984;102:410–2.

    Article  PubMed  CAS  Google Scholar 

  38. Yañez-Soto B, Mannis MJ, Schwab IR, Li JY, Leonard BC, Abbott NL, et al. Interfacial phenomena and the ocular surface. Ocul Surf. 2014;12:178–201.

    Article  PubMed  Google Scholar 

  39. Sharma A. Breakup and dewetting of the corneal mucus layer: an update. Adv Exp Med Biol. 1998;438:273–80.

    Article  PubMed  CAS  Google Scholar 

  40. Sharma A. Surface-chemical pathways of the tear film breakup: does corneal mucus have a role? Adv Exp Med Biol. 1998;438:361–70.

    Article  PubMed  CAS  Google Scholar 

  41. Tiffany JM. Measurement of wettability of the corneal epithelium. II. Contact angle method. Acta Ophthalmol (Copenh). 1990;68:182–7.

    Article  PubMed  CAS  Google Scholar 

  42. Shanker RM, Ahmed I, Bourassa PA, Carola KV. An in vitro technique for measuring contact angles on the corneal surface and its application to evaluate corneal wetting properties of water soluble polymers. Int J Pharm. 1995;119:149–63.

    Article  CAS  Google Scholar 

  43. Tiffany JM. The viscosity of human tears. Int Ophthalmol. 1991;15:371–6.

    Article  PubMed  CAS  Google Scholar 

  44. Dilly PN. Structure and function of the tear film. Adv Exp Med Biol. 1994;350:239–47.

    Article  PubMed  CAS  Google Scholar 

  45. Miller KL, Polse KA, Radke CJ. Black-line formation and the “perched” human tear film. Curr Eye Res. 2002;25:155–62.

    Article  PubMed  Google Scholar 

  46. McDonald JE, Brubaker S. Meniscus-induced thinning of tear films. Am J Ophthalmol. 1971;72:139–46.

    Article  PubMed  CAS  Google Scholar 

  47. Willcox MDP, Argüeso P, Georgiev G, Holopainen J, Laurie G, Millar T, et al. TFOS DEWS II Tear Film Report. Ocul Surf. 2017;15:366–403.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Georgiev GA, Eftimov P, Yokoi N. Structure-function relationship of tear film lipid layer: a contemporary perspective. Exp Eye Res. 2017;163:17–28.

    Article  PubMed  CAS  Google Scholar 

  49. Tomlinson A, Doane MG, McFadyen A. Inputs and outputs of the lacrimal system: review of production and evaporative loss. Ocul Surf. 2009;7:186–98.

    Article  PubMed  Google Scholar 

  50. Peng C-C, Cerretani C, Braun RJ, Radke C. Evaporation-driven instability of the precorneal tear film. Adv Colloid Interface Sci. 2014;206:250–64.

    Article  PubMed  CAS  Google Scholar 

  51. Holly FJ. Basic aspects of tear film formation and stability. In: Velarde MG, editor. Physicochemical hydrodynamics. NATO ASI Series (Series B: Physics), vol. 174. Boston: Springer; 1988. p. 401–10.

    Chapter  Google Scholar 

  52. Bitton E, Lovasik JV. Longitudinal analysis of precorneal tear film rupture patterns. Adv Exp Med Biol. 1998;438:381–9.

    Article  PubMed  CAS  Google Scholar 

  53. Rengstorff RH. The precorneal tear film: breakup time and location in normal subjects. Am J Optom Physiol Opt. 1974;51:765–9.

    Article  PubMed  CAS  Google Scholar 

  54. Liu H, Begley CG, Chalmers R, Wilson G, Srinivas SP, Wilkinson JA. Temporal progression and spatial repeatability of tear breakup. Optom Vis Sci. 2006;83:723–30.

    Article  PubMed  Google Scholar 

  55. Blossey R. Thin liquid films: dewetting and polymer flow. Dordrecht: Springer; 2012.

    Book  Google Scholar 

  56. Danjo Y, Watanabe H, Tisdale AS, George M, Tsumura T, Abelsom MB, et al. Alteration of mucin in human conjunctival epithelia in dry eye. Invest Ophthalmol Vis Sci. 1998;39:2602–9.

    PubMed  CAS  Google Scholar 

  57. Liotet S, van Bijsterveld OP, Kogbe O, Laroche L. A new hypothesis on tear film stability. Ophthalmologica. 1987;195:119–24.

    Article  PubMed  CAS  Google Scholar 

  58. Yáñez-Soto B, Leonard BC, Raghunathan VK, Abbott NL, Murphy CJ. Effect of stratification on surface properties of corneal epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:8340–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. King-Smith PE, Begley CG, Braun RJ. Mechanisms, imaging and structure of tear film breakup. Ocul Surf. 2018;16:4–30.

    Article  PubMed  Google Scholar 

  60. Takaoka-Shichijo Y, Nakamura N. Stimulatory effect of diquafosol tetrasodium in the expression of membrane-binding mucin genes in cultured human corneal epithelial cells. Atarashii Ganka. 2011;28:425–9 (in Japanese).

    CAS  Google Scholar 

  61. Koh S, Ikeda C, Takai Y, Watanabe H, Maeda N, Nishida K. Long-term results of treatment with diquafosol ophthalmic solution for aqueous-deficient dry eye. Jpn J Ophthalmol. 2013;57:440–6.

    Article  PubMed  CAS  Google Scholar 

  62. Yokoi N, Sonomura Y, Kato H, Komuro A, Kinoshita S. Three percent diquafosol ophthalmic solution as an additional therapy to existing artificial tears with steroids for dry-eye patients with Sjögren’s syndrome. Eye (Lond). 2015;29:1204–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Keating GM. Diquafosol ophthalmic solution 3%: a review of its use in dry eye. Drugs. 2015;75:911–22.

    Article  PubMed  CAS  Google Scholar 

  64. Yokoi N, Kato H, Kinoshita S. Facilitation of tear fluid secretion by 3% diquafosol ophthalmic solution in normal human eyes. Am J Ophthalmol. 2014;157:85–92.

    Article  PubMed  CAS  Google Scholar 

  65. Yokoi N, Kato H, Kinoshita S. The increase of aqueous tear volume by diquafosol sodium in dry-eye patients with Sjögren’s syndrome: a pilot study. Eye (Lond). 2016;30:857–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shigeyasu C, Hirano S, Akune Y, Yamada M. Diquafosol tetrasodium increases the concentration of mucin-like substances in tears of healthy human subjects. Curr Eye Res. 2015;40:878–83.

    Article  PubMed  CAS  Google Scholar 

  67. Himebaugh NL, Begley CG, Bradley A, Wilkinson JA. Blinking and tear break-up during four visual tasks. Optom Vis Sci. 2009;86:E106–14.

    Article  PubMed  Google Scholar 

  68. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15:276–83.

    Article  PubMed  Google Scholar 

  69. Koh S, Tung CI, Inoue Y, Jhanji V. Effects of tear film dynamics on quality of vision. Br J Ophthalmol. 2018;102:1615–20. https://doi.org/10.1136/bjophthalmol-2018-312333.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant-in-aid for scientific research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (no. 16K11269). The authors wish to thank John Bush for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Yokoi.

Ethics declarations

Conflicts of interest

N. Yokoi, Consultant fees (Alcon, Kissei, Rhoto), Honoraria (Johnson & Johnson Vision Care, Otsuka, Santen), P (Kowa, the patent for ophthalmologic apparatus has been licensed. The patent for an image classifying method is pending.); G. A. Georgiev, None.

Additional information

Organizer: Mitsuru Sawa, MD, PhD, Kohji Nishida, MD, PhD.

Corresponding author: Norihiko Yokoi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoi, N., Georgiev, G.A. Tear-film-oriented diagnosis for dry eye. Jpn J Ophthalmol 63, 127–136 (2019). https://doi.org/10.1007/s10384-018-00645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-00645-4

Keywords

Navigation