Skip to main content
Log in

Protective effect of P7C3 on retinal ganglion cells from optic nerve injury

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether P7C3-A20, a proneurogenic neuroprotective agent, can protect the retinal ganglion cells (RGCs) of rats from optic nerve crushing.

Methods

The left optic nerve of 67 rats was crushed, and 5.0 mg/kg/day of P7C3-A20 (crush-P7C3) or its vehicle (crush-placebo) was injected intraperitoneally for 3 days from one day prior to the crushing. The protective effects were determined by the number of Tuj-1-stained RGCs and by the ratio of the mRNA levels of BAX/Bcl-2 on day 7. The levels of NAD and NAD-related genes were also determined.

Results

The density of RGCs was 2009.4 ± 57.7 cells/mm2 in the sham controls; it was significantly lower in the crush-placebo group at 979.7 ± 144.3 cells/mm2 (P < 0.0001). The neuroprotective effects of P7C3-A20 was demonstrated by the significantly higher density of 1266.0 ± 193.1 cells/mm2 than in the crush-placebo group (P = 0.01, Scheffe). After crushing the optic nerve the BAX/Bcl-2 ratio was higher in the optic nerves and retina, application of P7C3-A20 significantly reduced this ratio. P7C3-A20 significantly increased the NAD level in the untouched optic nerves from 1.36 ± 0.05 to 1.59 ± 0.10 nmol/mg protein (P = 0.02, t test). Crushing the optic nerve decreased the level to 1.27 ± 0.21 nmol/mg protein and P7C3-A20 preserved the level at 1.43 ± 0.10 nmol/mg protein. Crushing the optic nerve decreased the mRNA levels of Nampt and Sirt-1 in the optic nerves, while P7C3-A20 significantly restored the levels.

Conclusions

P7C3-A20 can protect RGCs from optic nerve crushing possibly through preserving the NAD levels in the optic nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S. Absence of wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci. 1989;1:27–33.

    Article  CAS  PubMed  Google Scholar 

  2. Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196:7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci. 2001;4:1199–206.

    Article  CAS  PubMed  Google Scholar 

  4. Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, et al. WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J Cell Biol. 2009;184:491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol. 2007;179:1523–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, et al. A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol. 2005;170:349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sasaki Y, Vohra BP, Lund FE, Milbrandt J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci. 2009;29:5525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM, et al. Discovery of a proneurogenic, neuroprotective chemical. Cell. 2010;142:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, et al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell. 2014;158:1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin TC, Britt JK, De Jesus-Cortes H, Lu Y, Genova RM, Khan MZ, et al. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury. Cell Rep. 2014;8:1731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutca LM, Stasheff SF, Hedberg-Buenz A, Rudd DS, Batra N, Blodi FR, et al. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Invest Ophthalmol Vis Sci. 2014;55:8330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tesla R, Wolf HP, Xu P, Drawbridge J, Estill SJ, Huntington P, et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2012;109:17016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Jesus-Cortes H, Xu P, Drawbridge J, Estill SJ, Huntington P, Tran S, et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of parkinson disease. Proc Natl Acad Sci U S A. 2012;109:17010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurimoto T, Ishii M, Tagami Y, Nishimura M, Miyoshi T, Tsukamoto Y, et al. Xylazine promotes axonal regeneration in the crushed optic nerve of adult rats. Neuroreport. 2006;17:1525–9.

    Article  CAS  PubMed  Google Scholar 

  15. Tonari M, Kurimoto T, Horie T, Sugiyama T, Ikeda T, Oku H. Blocking endothelin-B receptors rescues retinal ganglion cells from optic nerve injury through suppression of neuroinflammation. Invest Ophthalmol Vis Sci. 2012;53:3490–500.

    Article  CAS  PubMed  Google Scholar 

  16. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994;14:4368–74.

    CAS  PubMed  Google Scholar 

  17. Isenmann S, Wahl C, Krajewski S, Reed JC, Bahr M. Up-regulation of bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci. 1997;9:1763–72.

    Article  CAS  PubMed  Google Scholar 

  18. Winkler BS. The electroretinogram of the isolated rat retina. Vis Res. 1972;12:1183–98.

    Article  CAS  PubMed  Google Scholar 

  19. Snow RL, Robson JA. Migration and differentiation of neurons in the retina and optic tectum of the chick. Exp Neurol. 1995;134:13–24.

    Article  CAS  PubMed  Google Scholar 

  20. Schelman WR, Andres RD, Sipe KJ, Kang E, Weyhenmeyer JA. Glutamate mediates cell death and increases the bax to bcl-2 ratio in a differentiated neuronal cell line. Brain Res Mol Brain Res. 2004;128:160–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SIRT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283:36300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Liu XZ, Tian WW, Guan YF, Wang P, Miao CY. Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci Ther. 2014;20:539–47.

    Article  CAS  PubMed  Google Scholar 

  23. Verghese PB, Sasaki Y, Yang D, Stewart F, Sabar F, Finn MB, et al. Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. Proc Natl Acad Sci U S A. 2011;108:19054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280:36334–41.

    Article  CAS  PubMed  Google Scholar 

  25. Stein LR, Imai S. The dynamic regulation of nad metabolism in mitochondria. Trends Endocrinol Metab. 2012;23:420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaplan BB, Gioio AE, Hillefors M, Aschrafi A. Axonal protein synthesis and the regulation of local mitochondrial function. Results Probl Cell Differ. 2009;48:225–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab. 2003;23:34–42.

    Article  CAS  PubMed  Google Scholar 

  28. Knoferle J, Koch JC, Ostendorf T, Michel U, Planchamp V, Vutova P, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci USA. 2010;107:6064–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tamsett TJ, Picchione KE, Bhattacharjee A. NAD+ activates KNa channels in dorsal root ganglion neurons. J Neurosci. 2009;29:5127–34.

    Article  CAS  PubMed  Google Scholar 

  30. Zuo L, Khan RS, Lee V, Dine K, Wu W, Shindler KS. SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 2013;54:5097–102.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim SH, Park JH, Kim YJ, Park KH. The neuroprotective effect of resveratrol on retinal ganglion cells after optic nerve transection. Mol Vis. 2013;19:1667–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shindler KS, Ventura E, Rex TS, Elliott P, Rostami A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 2007;48:3602–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ozawa Y, Kubota S, Narimatsu T, Yuki K, Koto T, Sasaki M, et al. Retinal aging and sirtuins. Ophthalmic Res. 2010;44:199–203.

    Article  CAS  PubMed  Google Scholar 

  34. Scuderi C, Stecca C, Bronzuoli MR, Rotili D, Valente S, Mai A, et al. Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer’s disease. Front Pharmacol. 2015;5:89. doi:10.3389/fphar.2014.00089.

    Google Scholar 

  35. Hernandez-Jimenez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke. 2013;44:2333–7.

    Article  CAS  PubMed  Google Scholar 

  36. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2011;18:159–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Duco Hamasaki, Bascom Palmer Eye Institute, University of Miami School of Medicine, for discussions and editing this manuscript.

Funding was provided by Grant-in-Aid for Scientific Research (KAKENHI) (Grant No. 16K11336).

Conflicts of interest

H. Oku, None; S. Morishita, None; T. Horie, None; Y. Nishikawa, None; T. Kida, None; M. Mimura, None; S. Kojima, None; T. Ikeda, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Oku.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oku, H., Morishita, S., Horie, T. et al. Protective effect of P7C3 on retinal ganglion cells from optic nerve injury. Jpn J Ophthalmol 61, 195–203 (2017). https://doi.org/10.1007/s10384-016-0493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0493-6

Keywords

Navigation