Skip to main content

Advertisement

Log in

Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the efficacy of 577- and 810-nm subthreshold micropulse laser photocoagulation (SMLP) combined with direct photocoagulation to microaneurysms in diabetic macular edema (DME).

Methods

A prospective nonrandomized interventional case series. Forty-nine consecutive patients (53 eyes) with DME were recruited. In 20/24 (83.3 %) eyes, 810-nm SMLP (810-nm MP) to achieve a confluent grid pattern was followed by direct photocoagulation to microaneurysms via a continuous 561-nm wavelength laser. In 21/29 (72.5 %) eyes, 577-nm SMLP (577-nm MP) was combined with direct photocoagulation to microaneurysms via the same instrument. Best-corrected visual acuity (BCVA) and central macular thickness (CMT) were examined 1, 2, 3, 6 and 12 months after treatment.

Results

The mean power required for SMLP was lower in the 577-nm than in the 810-nm MP group (204.1 vs. 954.1 mW) (p < 0.0001). Significant reductions in CMT persisted from 3 to 12 months after treatment in all patients (p < 0.01). There were no significant intergroup differences in CMT until 12 months. In both groups, mean BCVA remained stable until 12 months after treatment. Additional treatment for persistent macular edema was performed within 12 months in 4/24 eyes (16.7 %) in the 810-nm MP group and 1/29 eyes (3.4 %) in the 577-nm MP group.

Conclusion

Either 577-nm MP or 810-nm MP combined with direct photocoagulation for microaneurysm closure reduced DME, maintained visual acuity and reduced the additional treatment rate within 12 months. The 577-nm MP apparatus required less energy for SMLP than the 810-nm MP instrument and was suitable for direct photocoagulation of microaneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Early Treatment Diabetic Retinopathy Study Reseach Group. Photocoagulation for diabetic macular edema: ETDRS report number 1. Arch Ophthalmol. 1985;103:1796–806.

    Article  Google Scholar 

  2. Schatz H, Madeira D, McDonald HR, Johnson RN. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol. 1991;109:1549–51.

    Article  CAS  PubMed  Google Scholar 

  3. Guyer DR, D’Amico DJ, Smith CW. Subretinal fibrosis after laser photocoagulation for diabetic macular edema. Am J Ophthalmol. 1992;113:652–6.

    Article  CAS  PubMed  Google Scholar 

  4. Rutledge BK, Wallow IH, Poulsen GL. Sub-pigment epithelial membranes after photocoagulation for diabetic macular edema. Arch Ophthalmol. 1993;111:608.

    Article  CAS  PubMed  Google Scholar 

  5. Varley MP, Frank E, Purnell EW. Subretinal neovascularization after focal argon laser for diabetic macular edema. Ophthalmology. 1988;95:567–73.

    Article  CAS  PubMed  Google Scholar 

  6. Figueira J, Khan J, Nunes S, Sivaprasad S, Rosa A, de Abreu JF, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93:1341–4.

    Article  CAS  PubMed  Google Scholar 

  7. Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser. Ophthalmology. 1997;104:2030–8.

    Article  CAS  PubMed  Google Scholar 

  8. Laursen M, Moeller F, Sander B, Sjoelie A. Subthreshold micropulse diode laser treatment in diabetic macular oedema. Br J Ophthalmol. 2004;88:1173–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lavinsky D, Cardillo JA, Melo LA, Dare A, Farah ME, Belfort R. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52:4314–23.

    Article  PubMed  Google Scholar 

  10. Luttrull J, Musch D, Mainster M. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89:74–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Luttrull JK, Spink CJ. Serial optical coherence tomography of subthreshold diode laser micropulse photocoagulation for diabetic macular edema. Ophthalmic Surg Lasers Imaging. 2006;37:370.

    PubMed  Google Scholar 

  12. Moorman C, Hamilton A. Clinical applications of the micropulse diode laser. Eye. 1999;13:145–50.

    Article  PubMed  Google Scholar 

  13. Ohkoshi K, Yamaguchi T. Subthreshold micropulse diode laser photocoagulation for diabetic macular edema in Japanese patients. Am J Ophthalmol. 2010;149(133–9):e1.

    Google Scholar 

  14. Stanga PE, Reck AC, Hamilton AMP. Micropulse laser in the treatment of diabetic macular edema. Seminars in ophthalmology, vol. 4. London: Informa UK Ltd; 1999. p. 210–3.

    Google Scholar 

  15. Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30:908–16.

    Article  PubMed  Google Scholar 

  16. Inagaki K, Iseda A, Ohkoshi K. Subthreshold micropulse diode laser photocoagulation combined with direct photocoagulation for diabetic macular edema in Japanese patients. NipponGankaGakkaiZasshi. 2012;116:568–74 (in Japanese).

    Google Scholar 

  17. Fong DS, Strauber SF, Aiello LP, Beck RW, Callanan DG, Danis RP, et al. Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch Ophthalmol. 2007;125:469–80.

    Article  PubMed  Google Scholar 

  18. Mainster MA. Wavelength selection in macular photocoagulation. Ophthalmology. 1986;93:952–8.

    Article  CAS  PubMed  Google Scholar 

  19. Vujosevic S, Martini F, Convento E, Longhin E, Kotsafti O, Parrozzani R, et al. Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues. Curr Med Chem. 2013;20:3267–71.

    Article  CAS  PubMed  Google Scholar 

  20. Inagaki K, Ohkoshi K, Ohde S. Spectral-domain optical coherence tomography imaging of retinal changes after conventional multicolor laser, subthreshold micropulse diode laser, or pattern scanning laser therapy in Japanese with macular edema. Retina. 2012;32:1592–600.

    Article  PubMed  Google Scholar 

  21. Muqit MM, Gray JC, Marcellino GR, Henson DB, Young LB, Patton N, et al. In vivo laser-tissue interactions and healing responses from 20 vs. 100-millisecond pulse Pascal photocoagulation burns. Arch Ophthalmol. 2010;128:448–55.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

K. Inagaki, None; K. Ohkoshi, None; S. Ohde, None; G. A. Deshpande, None; N. Ebihara, None; A. Murakami, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Inagaki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inagaki, K., Ohkoshi, K., Ohde, S. et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema. Jpn J Ophthalmol 59, 21–28 (2015). https://doi.org/10.1007/s10384-014-0361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-014-0361-1

Keywords

Navigation