Skip to main content
Log in

Expression and putative functions of melatonin receptors in malignant cells and tissues

Expression und mögliche Funktionen von Melatonin-Rezeptoren in humanen Karzinomzellen und im Krebsgewebe

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Melatonin, the popular hormone of the darkness, is primarily synthesized in the pineal gland, and acts classically through the G-protein coupled plasma membrane melatonin receptors MT1 and MT2, respectively. Although some of the receptor mediated functions of melatonin, especially those on the (central) circadian system, have been more or less clarified, the functional meaning of MT-receptors in various peripheral organs are still not sufficiently investigated yet. There is, however, accumulating evidence for oncostatic effects of melatonin with both, antioxidative and MT-receptor mediated mechanisms possibly playing a role. This review briefly summarizes the physiology of melatonin and MT-receptors, and discusses the expression and function of MT-receptors in human cancer cells and tissues.

Zusammenfassung

Melatonin, das populäre Hormon der Dunkelheit, wird primär in der Zirbeldrüse gebildet und wirkt klassischerweise über die G-Protein gekoppelten Melatonin-Rezeptoren MT1 and MT2. Obwohl gewisse Rezeptor-vermittelte Funktionen des Melatonins, insbesondere auf das (zentrale) circadiane System, mehr oder minder aufgeklärt wurden, ist die funktionelle Bedeutung der MT-Rezeptoren in verschiedenen peripheren Organen noch unzureichend untersucht. In letzter Zeit mehren sich die Hinweise, dass Melatonin onkostatische Wirkungen aufweist, wobei sowohl antioxidative als auch Rezeptor- induzierte Mechanismen beteiligt zu sein scheinen. Diese Übersichtsarbeit fasst in komprimierter Form die Physiologie des Melatonins und der Melatonin-Rezeptoren zusammen und gibt einen Überblick über die Expression und mögliche Funktionen von Melatonin-Rezeptoren in humanen Karzinomzellen und im Krebsgewebe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerner AB, Case JD, Takahashi Y, et al. Isolation of melatonin, a pineal factor that lightens melanocytes. J Am Chem Soc. 1958;80:2057–8.

    Google Scholar 

  2. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9:11–24.

    PubMed  Google Scholar 

  3. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol. 2012;351:152–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine reviews. 1991;12:151–80.

    CAS  PubMed  Google Scholar 

  5. Allegra M, Reiter RJ, Tan DX, et al. The chemistry of melatonin’s interaction with reactive species. J Pineal Res. 2003;34:1–10.

    CAS  PubMed  Google Scholar 

  6. Tan DX, Manchester LC, Hardeland R, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2003;34:75–8.

    CAS  PubMed  Google Scholar 

  7. Pandi-Perumal SR, BaHammam AS, Brown GM, et al. Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013;23:267–300.

    CAS  PubMed  Google Scholar 

  8. Benitez-King G, Anton-Tay F. Calmodulin mediates melatonin cytoskeletal effects. Experientia. 1993;49:635–41.

    CAS  PubMed  Google Scholar 

  9. Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, et al. Involvement of nuclear binding sites for melatonin in the regulation of il-2 and il-6 production by human blood mononuclear cells. J Neuroimmunol. 1998;92:76–84.

    CAS  PubMed  Google Scholar 

  10. Steinhilber D, Brungs M, Werz O, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human b lymphocytes. J Biol Chem. 1995;270:7037–40.

    CAS  PubMed  Google Scholar 

  11. Dubocovich ML, Delagrange P, Krause DN, et al. International union of basic and clinical pharmacology. Lxxv. Nomenclature, classification, and pharmacology of g protein-coupled melatonin receptors. Pharmacol Rev. 2010;62:343–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, et al. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci. 2003;8:d1093–108.

    CAS  PubMed  Google Scholar 

  13. Barrett P, Conway S, Morgan PJ. Digging deep–structure-function relationships in the melatonin receptor family. J Pineal Res. 2003;35:221–30.

    CAS  PubMed  Google Scholar 

  14. New DC, Tsim ST, Wong YH. G protein-linked effector and second messenger systems involved in melatonin signal transduction. Neurosignals. 2003;12:59–70.

    CAS  PubMed  Google Scholar 

  15. Masana MI, Dubocovich ML. Melatonin receptor signaling: finding the path through the dark. Sci STKE. 2001;2001:PE39.

    CAS  PubMed  Google Scholar 

  16. Jiang ZG, Nelson CS, Allen CN. Melatonin activates an outward current and inhibits ih in rat suprachiasmatic nucleus neurons. Brain Res. 1995;687:125–32.

    CAS  PubMed  Google Scholar 

  17. Ben Soussia I, Mies F, Naeije R, et al. Melatonin down-regulates volume-sensitive chloride channels in fibroblasts. Pflugers Arch. 2012;464:273–85.

    CAS  PubMed  Google Scholar 

  18. Reppert SM, Godson C, Mahle CD, et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: The mel1b melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Petit L, Lacroix I, de Coppet P, et al. Differential signaling of human mel1a and mel1b melatonin receptors through the cyclic guanosine 3′-5′-monophosphate pathway. Biochem Pharmacol. 1999;58:633–9.

    CAS  PubMed  Google Scholar 

  20. Hunt AE, Al-Ghoul WM, Gillette MU, et al. Activation of mt(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol. 2001;280:C110–8.

    CAS  PubMed  Google Scholar 

  21. Ayoub MA, Couturier C, Lucas-Meunier E, et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem. 2002;277:21522–8.

    CAS  PubMed  Google Scholar 

  22. Mailliet F, Ferry G, Vella F, et al. Organs from mice deleted for nrh:Quinone oxidoreductase 2 are deprived of the melatonin binding site mt3. FEBS Lett. 2004;578:116–20.

    CAS  PubMed  Google Scholar 

  23. Nosjean O, Ferro M, Coge F, et al. Identification of the melatonin-binding site mt3 as the quinone reductase 2. J Biol Chem. 2000;275:31311–7.

    CAS  PubMed  Google Scholar 

  24. Pintor J, Pelaez T, Hoyle CH, et al. Ocular hypotensive effects of melatonin receptor agonists in the rabbit: Further evidence for an mt3 receptor. Br J Pharmacol. 2003;138:831–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Reppert SM, Weaver DR, Ebisawa T, et al. Cloning of a melatonin-related receptor from human pituitary. FEBS Lett. 1996;386:219–24.

    CAS  PubMed  Google Scholar 

  26. von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309:151–62.

    CAS  PubMed  Google Scholar 

  27. Witt-Enderby PA, Bennett J, Jarzynka MJ, et al. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci. 2003;72:2183–98.

    CAS  PubMed  Google Scholar 

  28. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother. 2006;60:97–108.

    CAS  PubMed  Google Scholar 

  29. Weaver DR, Reppert SM. The mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport. 1996;8:109–12.

    CAS  PubMed  Google Scholar 

  30. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    CAS  PubMed  Google Scholar 

  31. Okamura H, Doi M, Fustin JM, et al. Mammalian circadian clock system: molecular mechanisms for pharmaceutical and medical sciences. Adv Drug Deliv Rev. 2010;62:876–84.

    CAS  PubMed  Google Scholar 

  32. Imbesi M, Arslan AD, Yildiz S, et al. The melatonin receptor mt1 is required for the differential regulatory actions of melatonin on neuronal ‘clock’ gene expression in striatal neurons in vitro. J Pineal Res. 2009;46:87–94.

    CAS  PubMed  Google Scholar 

  33. Nemeth C, Humpeler S, Kallay E, et al. Decreased expression of the melatonin receptor 1 in human colorectal adenocarcinomas. J Biol Regul Homeost Agents. 2011;25:531–42.

    CAS  PubMed  Google Scholar 

  34. Arendt J, Skene DJ, Middleton B, et al. Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms. 1997;12:604–17.

    CAS  PubMed  Google Scholar 

  35. Spadoni G, Bedini A, Rivara S, et al. Melatonin receptor agonists: New options for insomnia and depression treatment. CNS Neurosci Ther. 2011;17:733–41.

    CAS  PubMed  Google Scholar 

  36. Zhdanova IV. Melatonin as a hypnotic: Pro. Sleep Med Rev. 2005;9:51–65.

    PubMed  Google Scholar 

  37. Uchikawa O, Fukatsu K, Tokunoh R, et al. Synthesis of a novel series of tricyclic indan derivatives as melatonin receptor agonists. J Med Chem. 2002;45:4222–39.

    CAS  PubMed  Google Scholar 

  38. Wu YH, Ursinus J, Zhou JN, et al. Alterations of melatonin receptors mt1 and mt2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord. 2013;148:357–67.

    CAS  PubMed  Google Scholar 

  39. Hickie IB, Rogers NL. Novel melatonin-based therapies: Potential advances in the treatment of major depression. Lancet. 2011;378:621–31.

    CAS  PubMed  Google Scholar 

  40. Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (s20098) is an antagonist at 5-hydroxytryptamine 2c receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003;306:954–64.

    CAS  PubMed  Google Scholar 

  41. Savaskan E, Olivieri G, Meier F, et al. Increased melatonin 1a-receptor immunoreactivity in the hippocampus of alzheimer’s disease patients. J Pineal Res. 2002;32:59–62.

    PubMed  Google Scholar 

  42. Uz T, Arslan AD, Kurtuncu M, et al. The regional and cellular expression profile of the melatonin receptor mt1 in the central dopaminergic system. Brain Res Mol Brain Res. 2005;136:45–53.

    CAS  PubMed  Google Scholar 

  43. Scher J, Wankiewicz E, Brown GM, et al. Mt(1) melatonin receptor in the human retina: Expression and localization. Invest Ophthalmol Vis Sci. 2002;43:889–97.

    PubMed  Google Scholar 

  44. Ekmekcioglu C, Haslmayer P, Philipp C, et al. 24h variation in the expression of the mt1 melatonin receptor subtype in coronary arteries derived from patients with coronary heart disease. Chronobiol Int. 2001;18:973–85.

    CAS  PubMed  Google Scholar 

  45. Ekmekcioglu C, Haslmayer P, Philipp C, et al. Expression of the mt1 melatonin receptor subtype in human coronary arteries. J Recept Signal Transduct Res. 2001;21:85–91.

    CAS  PubMed  Google Scholar 

  46. Ekmekcioglu C, Thalhammer T, Humpeler S, et al. The melatonin receptor subtype mt2 is present in the human cardiovascular system. J Pineal Res 2003;35:40–4.

    CAS  PubMed  Google Scholar 

  47. Aust S, Thalhammer T, Humpeler S, et al. The melatonin receptor subtype mt1 is expressed in human gallbladder epithelia. J Pineal Res. 2004;36:43–8.

    CAS  PubMed  Google Scholar 

  48. Toma CD, Svoboda M, Arrich F, et al. Expression of the melatonin receptor (mt) 1 in benign and malignant human bone tumors. J Pineal Res. 2007;43:206–13.

    CAS  PubMed  Google Scholar 

  49. Rogelsperger O, Wlcek K, Ekmekcioglu C, et al. Melatonin receptors, melatonin metabolizing enzymes and cyclin d1 in human breast cancer. J Recept Signal Transduct Res. 2011;31:180–7.

    PubMed  Google Scholar 

  50. Rogelsperger O, Ekmekcioglu C, Jager W, et al. Coexpression of the melatonin receptor 1 and nestin in human breast cancer specimens. J Pineal Res. 2009;46:422–32.

    CAS  PubMed  Google Scholar 

  51. Yang Q, Scalbert E, Delagrange P, et al. Melatonin potentiates contractile responses to serotonin in isolated porcine coronary arteries. Am J Physiol Heart Circ Physiol. 2001;280:H76–82.

    Google Scholar 

  52. Masana MI, Doolen S, Ersahin C, et al. Mt(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther. 2002;302:1295–302.

    CAS  PubMed  Google Scholar 

  53. Krauchi K, Cajochen C, Wirz-Justice A. A relationship between heat loss and sleepiness: Effects of postural change and melatonin administration. J Appl Physiol. 1997;83:134–9.

    CAS  PubMed  Google Scholar 

  54. van den Heuvel CJ, Kennaway DJ, Dawson D. Thermoregulatory and soporific effects of very low dose melatonin injection. Am J Physiol. 1999;276:E249–54.

    Google Scholar 

  55. Cook JS, Sauder CL, Ray CA. Melatonin differentially affects vascular blood flow in humans. Am J Physiol Heart Circ Physiol. 2011;300:H670–4.

    Google Scholar 

  56. Arangino S, Cagnacci A, Angiolucci M, et al. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am J Cardiol. 1999;83:1417–9.

    CAS  PubMed  Google Scholar 

  57. Raikhlin NT, Kvetnoy IM, Tolkachev VN. Melatonin may be synthesised in enterochromaffin cells. Nature. 1975;255:344–5.

    CAS  PubMed  Google Scholar 

  58. Sjoblom M, Jedstedt G, Flemstrom G. Peripheral melatonin mediates neural stimulation of duodenal mucosal bicarbonate secretion. J Clin Invest. 2001;108:625–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Le Gouic S, Delagrange, Atgie C, et al. Effects of both a melatonin agonist and antagonist on seasonal changes in body mass and energy intake in the garden dormouse. Int J Obes Relat Metab Disord. 1996;20:661–7.

    CAS  PubMed  Google Scholar 

  60. Viswanathan M, Hissa R, George JC. Effects of short photoperiod and melatonin treatment on thermogenesis in the syrian hamster. J Pineal Res. 1986;3:311–21.

    CAS  PubMed  Google Scholar 

  61. Kozirog M, Poliwczak AR, Duchnowicz P, et al. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res. 2011;50:261–6.

    CAS  PubMed  Google Scholar 

  62. Peschke E, Bahr I, Muhlbauer E. Melatonin and pancreatic islets: Interrelationships between melatonin, insulin and glucagon. Int J Mol Sci. 2013;14:6981–7015.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Peschke E, Schucht H, Muhlbauer E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both wistar and type 2-diabetic goto-kakizaki rats. J Pineal Res. 2010;49:373–81.

    CAS  PubMed  Google Scholar 

  64. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near mtnr1b is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89–94.

    CAS  PubMed  Google Scholar 

  65. Chambers JC, Zhang W, Zabaneh D, et al. Common genetic variation near melatonin receptor mtnr1b contributes to raised plasma glucose and increased risk of type 2 diabetes among indian asians and european caucasians. Diabetes. 2009;58:2703–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Xia Q, Chen ZX, Wang YC, et al. Association between the melatonin receptor 1b gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: a meta-analysis. PLoS One. 2012;7:e50107.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, et al. Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem. 2010;17:4462–81.

    CAS  PubMed  Google Scholar 

  68. Cutando A, Lopez-Valverde A, Arias-Santiago S, et al. Role of melatonin in cancer treatment. Anticancer Res. 2012;32:2747–53.

    CAS  PubMed  Google Scholar 

  69. Cohen M, Lippman M, Chabner B. Pineal gland and breast cancer. Lancet. 1978;2:1381–2.

    CAS  PubMed  Google Scholar 

  70. Bartsch C, Bartsch H, Jain AK, et al. Urinary melatonin levels in human breast cancer patients. J Neural Transm. 1981;52:281–94.

    CAS  PubMed  Google Scholar 

  71. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17:273–84.

    PubMed  Google Scholar 

  72. Hansen J, Lassen CF. Nested case-control study of night shift work and breast cancer risk among women in the danish military. Occup Environ Med. 2012;69:551–6.

    PubMed  Google Scholar 

  73. Schernhammer ES, Berrino F, Krogh V, et al. Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2008;100:898–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Proietti S, Cucina A, Reiter RJ, et al. Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell Mol Life Sci. 2013;70:2139–57.

    CAS  PubMed  Google Scholar 

  75. Yuan L, Collins AR, Dai J, et al. Mt(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol. 2002;192:147–56.

    CAS  PubMed  Google Scholar 

  76. Dillon DC, Easley SE, Asch BB, et al. Differential expression of high-affinity melatonin receptors (mt1) in normal and malignant human breast tissue. Am J Clin Pathol. 2002;118:451–8.

    CAS  PubMed  Google Scholar 

  77. Garcia Pedrero JM, Del Rio, Martinez-Campa C, et al. Calmodulin is a selective modulator of estrogen receptors. Mol Endocrinol. 2002;16:947–60.

    PubMed  Google Scholar 

  78. Cos S, Gonzalez A, Martinez-Campa C, et al. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev. 2006;30:118–28.

    CAS  PubMed  Google Scholar 

  79. Mediavilla MD, Cos S, Sanchez-Barcelo EJ. Melatonin increases p53 and p21waf1 expression in mcf-7 human breast cancer cells in vitro. Life Sci. 1999;65:415–20.

    CAS  PubMed  Google Scholar 

  80. Santoro R, Mori F, Marani M, et al. Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis. 2013;34:1051–61.

    CAS  PubMed  Google Scholar 

  81. Cos S, Blask DE, Lemus-Wilson A, et al. Effects of melatonin on the cell cycle kinetics and “estrogen-rescue” of mcf-7 human breast cancer cells in culture. J Pineal Res. 1991;10:36–42.

    CAS  PubMed  Google Scholar 

  82. Kauppila A, Kivela A, Pakarinen A, et al. Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J Clin Endocrinol Metab. 1987;65:823–8.

    CAS  PubMed  Google Scholar 

  83. Hill SM, Blask DE, Xiang S, et al. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia. 2011;16:235–45.

    PubMed  Google Scholar 

  84. Jablonska K, Pula B, Zemla A, et al. Expression of melatonin receptor mt1 in cells of human invasive ductal breast carcinoma. J Pineal Res. 2013;54:334–45.

    CAS  PubMed  Google Scholar 

  85. Oprea-Ilies G, Haus E, Sackett-Lundeen L, et al. Expression of melatonin receptors in triple negative breast cancer (tnbc) in african american and caucasian women: relation to survival. Breast Cancer Res Treat. 2013;137:677–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. GLOBOCAN: Estimated cancer incidence, mortality and prevalence worldwide in 2012. http://globocan.Iarc.fr. Accessed 7 July 2014

  87. Shiu SY. Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J Pineal Res. 2007;43:1–9.

    CAS  PubMed  Google Scholar 

  88. Joo SS, Yoo YM. Melatonin induces apoptotic death in lncap cells via p38 and jnk pathways: therapeutic implications for prostate cancer. J Pineal Res. 2009;47:8–14.

    CAS  PubMed  Google Scholar 

  89. Jung-Hynes B, Schmit TL, Reagan-Shaw SR, et al. Melatonin, a novel sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in tramp model. J Pineal Res. 2011;50:140–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Xi SC, Tam PC, Brown GM, et al. Potential involvement of mt1 receptor and attenuated sex steroid-induced calcium influx in the direct anti-proliferative action of melatonin on androgen-responsive lncap human prostate cancer cells. J Pineal Res. 2000;29:172–83.

    CAS  PubMed  Google Scholar 

  91. Tam CW, Chan KW, Liu VW, et al. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res. 2008;45:403–12.

    CAS  PubMed  Google Scholar 

  92. Gilad E, Laudon M, Matzkin H, et al. Functional melatonin receptors in human prostate epithelial cells. Endocrinology. 1996;137:1412–7.

    CAS  PubMed  Google Scholar 

  93. Laudon M, Gilad E, Matzkin H, et al. Putative melatonin receptors in benign human prostate tissue. J Clin Endocrinol Metab. 1996;81:1336–42.

    CAS  PubMed  Google Scholar 

  94. Tam CW, Shiu SY. Functional interplay between melatonin receptor-mediated antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential implications for therapeutic strategies against prostate cancer. J Pineal Res. 2011;51:297–312.

    CAS  PubMed  Google Scholar 

  95. Tam CW, Mo CW, Yao KM, et al. Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22rv1 human prostate cancer cells: implications for prostate cancer chemoprevention. J Pineal Res. 2007;42:191–202.

    CAS  PubMed  Google Scholar 

  96. Fernandez PL, Arce Y, Farre X, et al. Expression of p27/kip1 is down-regulated in human prostate carcinoma progression. J Pathol. 1999;187:563–6.

    CAS  PubMed  Google Scholar 

  97. Rimler A, Culig Z, Levy-Rimler G, et al. Melatonin elicits nuclear exclusion of the human androgen receptor and attenuates its activity. The Prostate. 2001;49:145–54.

    CAS  PubMed  Google Scholar 

  98. Kos-Kudla B, Ostrowska Z, Kozlowski A, et al. Circadian rhythm of melatonin in patients with colorectal carcinoma. Neuro Endocrinol Lett. 2002;23:239–42.

    CAS  PubMed  Google Scholar 

  99. Schernhammer ES, Laden F, Speizer FE, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95:825–8.

    PubMed  Google Scholar 

  100. Farriol M, Venereo Y, Orta X, et al. In vitro effects of melatonin on cell proliferation in a colon adenocarcinoma line. J Appl Toxicol. 2000;20:21–4.

    CAS  PubMed  Google Scholar 

  101. Slominski A, Pisarchik A, Semak I, et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. Faseb J. 2002;16:896–8.

    CAS  PubMed  Google Scholar 

  102. Slominski A, Pisarchik A, Zbytek B, et al. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol. 2003;196:144–53.

    CAS  PubMed  Google Scholar 

  103. Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. Faseb J. 2005;19:176–94.

    CAS  PubMed  Google Scholar 

  104. Hu DN, Roberts JE. Melatonin inhibits growth of cultured human uveal melanoma cells. Melanoma Res. 1997;7:27–31.

    CAS  PubMed  Google Scholar 

  105. Ying SW, Niles LP, Crocker C. Human malignant melanoma cells express high-affinity receptors for melatonin: Antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol. 1993;246:89–96.

    CAS  PubMed  Google Scholar 

  106. Cabrera J, Negrin G, Estevez F, et al. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma sk-mel-1 cells. J Pineal Res. 2010;49:45–54.

    CAS  PubMed  Google Scholar 

  107. Danielczyk K, Dziegiel P. The expression of mt1 melatonin receptor and ki-67 antigen in melanoma malignum. Anticancer Res. 2009;29:3887–95.

    PubMed  Google Scholar 

  108. Kleszczynski K, Fischer TW. Melatonin and human skin aging. Dermatoendocrinol. 2012;4:245–52.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Theresia Thalhammer for the wonderful and fruitful cooperation during the last 15 years, which resulted in 19 Medline-papers, 1 book chapter and many comfortable discussions and moments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Ekmekcioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekcioglu, C. Expression and putative functions of melatonin receptors in malignant cells and tissues. Wien Med Wochenschr 164, 472–478 (2014). https://doi.org/10.1007/s10354-014-0289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-014-0289-6

Keywords

Schlüsselwörter

Navigation