Skip to main content

Advertisement

Log in

Robotic liver surgery—advantages and limitations

  • main topic
  • Published:
European Surgery Aims and scope Submit manuscript

Summary

Background

Robotic surgery is now within the standard of care for many operations, including hepatectomy. Robotic liver surgery has advantages over laparoscopic and open surgical techniques, but these must be weighed against certain limitations when selecting an approach.

Methods

Advantages and limitations of robotic liver surgery are discussed here based on a literature survey.

Results

Advantages include improved surgeon ergonomics, better access to posterior and superior liver segments, excellent visualization, and ease of using indocyanine green. There may also be a shorter learning curve for use, and there are possibilities for technological assistance with surgery in the future. Limitations are related to those known for minimally invasive surgery in general, but also include time for docking and cost. Considerations are reviewed in detail to facilitate decision making when considering a robotic approach for liver surgery.

Conclusion

The robotic platform is not appropriate for all liver operations at this time. Benefits of robotic surgery are most clearly realized when approaching lesions in the posterior and superior segments, and when a large incision would be required to remove a small amount of liver parenchyma were the operation to be performed in an open fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lafaro KJ, Stewart C, Fong A, Fong Y. Robotic liver resection. Surg Clin North Am. 2020;100:265–81. https://doi.org/10.1016/j.suc.2019.11.003.

    Article  PubMed  Google Scholar 

  2. Szeto GP, Poon JT, Law WL. A comparison of surgeon’s postural muscle activity during robotic-assisted and laparoscopic rectal surgery. J Robot Surg. 2013;7:305–8. https://doi.org/10.1007/s11701-012-0374-z.

    Article  PubMed  Google Scholar 

  3. van der Schatte Olivier RH, Van’t Hullenaar CD, Ruurda JP, Broeders IA. Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc. 2009;23:1365–71. https://doi.org/10.1007/s00464-008-0184-6.

    Article  PubMed  Google Scholar 

  4. Kuo LJ, Ngu JC, Lin YK, Chen CC, Tang YH. A pilot study comparing ergonomics in laparoscopy and robotics: beyond anecdotes, and subjective claims. J Surg Case Rep. 2020; https://doi.org/10.1093/jscr/rjaa005.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mucksavage P, Kerbl DC, Lee JY. The da Vinci surgical system overcomes innate hand dominance. J Endourol. 2011;25:1385–8. https://doi.org/10.1089/end.2011.0093.

    Article  PubMed  Google Scholar 

  6. Soueid A, Oudit D, Thiagarajah S, Laitung G. The pain of surgery: pain experienced by surgeons while operating. Int J Surg. 2010;8:118–20. https://doi.org/10.1016/j.ijsu.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Money SR, Marrow MM, et al. Impact of procedure type, case duration, and adjunctive equipment on surgeon intraoperative musculoskeletal discomfort. J Am Coll Surg. 2020; https://doi.org/10.1016/j.jamcollsurg.2019.12.035.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meltzer AJ, Hallbeck MS, Morrow MM, et al. Measuring ergonomic risk in operating surgeons by using wearable technology. JAMA Surg. 2020; https://doi.org/10.1001/jamasurg.2019.6384.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hallbeck MS, Lowndes BR, Bingener J, et al. The impact of intraoperative microbreaks with exercises on surgeons: a multi-center cohort study. Appl Ergon. 2017;60:334–41. https://doi.org/10.1016/j.apergo.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  10. Wells AC, Kjellman M, Harper SJF, Forsman M, Hallbeck MS. Operating hurts: a study of EAES surgeons. Surg Endosc. 2019;33:933–40. https://doi.org/10.1007/s00464-018-6574-5.

    Article  PubMed  Google Scholar 

  11. Davis WT, Fletcher SA, Guillamondegui OD. Musculoskeletal occupational injury among surgeons: effects for patients, providers, and institutions. J Surg Res. 2014;189:207–12. https://doi.org/10.1016/j.jss.2014.03.013.

    Article  PubMed  Google Scholar 

  12. Jain S, Sharma B, Kaushik M, Jain L. Debakey forceps crushing technique for hepatic parenchymal transection in liver surgery: a review of 100 cases and ergonomic advantages. HPB Surg. 2014;2014:861829. https://doi.org/10.1155/2014/861829.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plerhoples TA, Hernandez-Boussard T, Wren SM. The aching surgeon: a survey of physical discomfort and symptoms following open, laparoscopic, and robotic surgery. J Robot Surg. 2012;6:65–72. https://doi.org/10.1007/s11701-011-0330-3.

    Article  PubMed  Google Scholar 

  14. Fong Y, Woo Y, Hyung WJ, Lau C, Strong VE, editors. SAGES atlas in robotic surgery. 2019.

    Google Scholar 

  15. Nota CL, Rinkes IHB, Hagendoorn J. Setting up a robotic hepatectomy program: a Western-European experience and perspective. Hepatobiliary Surg Nutr. 2017;6:239–45. https://doi.org/10.21037/hbsn.2016.12.05.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buell JF, Cherqui D, Geller DA, O’Rourke N, Iannitti D, Dagher I, et al. The international position on laparoscopic liver surgery: the Louisville statement, 2008. Ann Surg. 2009;250:825–30. https://doi.org/10.1097/sla.0b013e3181b3b2d8.

    Article  PubMed  Google Scholar 

  17. Lee W, Han HS, Yoon YS, et al. Comparison of laparoscopic liver resection for hepatocellular carcinoma located in the posterosuperior segments or anterolateral segments: a case-matched analysis. Surgery. 2016;160:1219–26. https://doi.org/10.1016/j.surg.2016.05.009.

    Article  PubMed  Google Scholar 

  18. Teo JY, Kam JH, Chan CY, et al. Laparoscopic liver resection for posterosuperior and anterolateral lesions—a comparison experience in an Asian centre. Hepatobiliary Surg Nutr. 2015;4:379–90. https://doi.org/10.3978/j.issn.2304-3881.2015.06.06.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wakabayashi G, Cherqui D, Geller DA, et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg. 2015;261:619–29. https://doi.org/10.1097/SLA.0000000000001184.

    Article  PubMed  Google Scholar 

  20. Fretland ÅA, Dagenborg VJ, Bjørnelv GMW, et al. Laparoscopic versus open resection for colorectal liver metastases: the OSLO-COMET randomized controlled trial. Ann Surg. 2018;267:199–207. https://doi.org/10.1097/SLA.0000000000002353.

    Article  PubMed  Google Scholar 

  21. Aghayan DL, Fretland ÅA, Kazaryan AM, et al. Laparoscopic versus open liver resection in the posterosuperior segments: a sub-group analysis from the OSLO-COMET randomized controlled trial. HPB. 2019;21:1485–90. https://doi.org/10.1016/j.hpb.2019.03.358.

    Article  PubMed  Google Scholar 

  22. Melstrom LG, Warner SG, Woo Y, et al. Selecting incision-dominant cases for robotic liver resection: towards outpatient hepatectomy with rapid recovery. Hepatobiliary Surg Nutr. 2018;7:77–84. https://doi.org/10.21037/hbsn.2017.05.05.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nota CL, Woo Y, Raoof M, et al. Robotic versus open minor liver resections of the posterosuperior segments: a multinational, propensity score-matched study. Ann Surg Oncol. 2019;26:583–90. https://doi.org/10.1245/s10434-018-6928-1.

    Article  PubMed  Google Scholar 

  24. Croner RS, Perrakis A, Hohenberger W, Brunner M. Robotic liver surgery for minor hepatic resections: a comparison with laparoscopic and open standard procedures. Langenbecks Arch Surg. 2016;401:707–14. https://doi.org/10.1007/s00423-016-1440-1.

    Article  PubMed  Google Scholar 

  25. Tsung A, Geller DA, Sukato DC, et al. Robotic versus laparoscopic hepatectomy: a matched comparison. Ann Surg. 2014;259:549–55. https://doi.org/10.1097/SLA.0000000000000250.

    Article  PubMed  Google Scholar 

  26. Kingham TP, Leung U, Kuk D, et al. Robotic liver resection: a case-matched comparison. World J Surg. 2016;40:1422–8. https://doi.org/10.1007/s00268-016-3446-9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen PD, Wu CY, Hu RH, et al. Robotic versus open hepatectomy for hepatocellular carcinoma: a matched comparison. Ann Surg Oncol. 2017;24:1021–8. https://doi.org/10.1245/s10434-016-5638-9.

    Article  PubMed  Google Scholar 

  28. Fretland ÅA, Dagenborg VJ, Waaler B, et al. Quality of life from a randomized trial of laparoscopic or open liver resection for colorectal liver metastases. Br J Surg. 2019; https://doi.org/10.1002/bjs.11227.

    Article  PubMed  Google Scholar 

  29. Hu L, Yao L, Li X, Jin P, Yang K, Guo T. Effectiveness and safety of robotic-assisted versus laparoscopic hepatectomy for liver neoplasms: a meta-analysis of retrospective studies. Asian J Surg. 2018;41:401–16. https://doi.org/10.1016/j.asjsur.2017.07.001.

    Article  PubMed  Google Scholar 

  30. Moore LJ, Wilson MR, Waine E, Masters RS, McGrath JS, Vine SJ. Robotic technology results in faster and more robust surgical skill acquisition than traditional laparoscopy. J Robot Surg. 2015;9:67–73. https://doi.org/10.1007/s11701-014-0493-9.

    Article  PubMed  Google Scholar 

  31. Montalti R, Scuderi V, Patriti A, Vivarelli M, Troisi RI. Robotic versus laparoscopic resections of posterosuperior segments of the liver: a propensity score-matched comparison. Surg Endosc. 2016;30:1004–13. https://doi.org/10.1007/s00464-015-4284-9.

    Article  PubMed  Google Scholar 

  32. Zhu P, Liao W, Ding ZY, et al. Learning curve in robot-assisted laparoscopic liver resection. J Gastrointest Surg. 2019;23:1778–87. https://doi.org/10.1007/s11605-018-3689-x.

    Article  PubMed  Google Scholar 

  33. Chen PD, Wu CY, Hu RH, et al. Robotic major hepatectomy: Is there a learning curve? Surgery. 2017;161:642–9. https://doi.org/10.1016/j.surg.2016.09.025.

    Article  PubMed  Google Scholar 

  34. van der Poel MJ, Besselink MG, Cipriani F, et al. Outcome and learning curve in 159 consecutive patients undergoing total laparoscopic hemihepatectomy. JAMA Surg. 2016;151:923–8. https://doi.org/10.1001/jamasurg.2016.1655.

    Article  PubMed  Google Scholar 

  35. Efanov M, Alikhanov R, Tsvirkun V, et al. Comparative analysis of learning curve in complex robot-assisted and laparoscopic liver resection. HPB (Oxford). 2017;19:818–24. https://doi.org/10.1016/j.hpb.2017.05.003.

    Article  Google Scholar 

  36. Chong CCN, Lok HT, Fung AKY, et al. Robotic versus laparoscopic hepatectomy: application of the difficulty scoring system. Surg Endosc. 2019; https://doi.org/10.1007/s00464-019-06976-8.

    Article  PubMed  Google Scholar 

  37. Kluger MD, Vigano L, Barroso R, Cherqui D. The learning curve in laparoscopic major liver resection. J Hepatobiliary Pancreat Sci. 2013;20:131–6. https://doi.org/10.1007/s00534-012-0571-1.

    Article  PubMed  Google Scholar 

  38. deBeche-Adams T, Eubanks WS, de la Fuente SG. Early experience with the Senhance® laparoscopic/robotic platform in the US. J Robot Surg. 2019;13:357–9. https://doi.org/10.1007/s11701-018-0893-3.

    Article  PubMed  Google Scholar 

  39. Heron DM, Dong M. Upcoming robotic systems. In: Tsuda S, Kudsi O, editors. Robotic-assisted minimally invasive surgery. New York: Springer; 2018p. pp. 319–21.

    Google Scholar 

  40. van Bergen P, Kunert W, Bessell J, Buess GF. Comparative study of two-dimensional and three-dimensional vision systems for minimally invasive surgery. Surg Endosc. 1998;12:948–54. https://doi.org/10.1007/s004649900754.

    Article  PubMed  Google Scholar 

  41. Cassilly R, Diodato MD, Bottros M, Damiano RJ Jr.. Optimizing motion scaling and magnification in robotic surgery. Surgery. 2004;136:291–4. https://doi.org/10.1016/j.surg.2004.05.002.

    Article  PubMed  Google Scholar 

  42. Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc. 2004;18:790–5. https://doi.org/10.1007/s00464-003-8922-2.

    Article  CAS  PubMed  Google Scholar 

  43. Moore LJ, Wilson MR, McGrath JS, Waine E, Masters RS, Vine SJ. Surgeons’ display reduced mental effort and workload while performing robotically assisted surgical tasks, when compared to conventional laparoscopy. Surg Endosc. 2015;29:2553–60. https://doi.org/10.1007/s00464-014-3967-y.

    Article  PubMed  Google Scholar 

  44. Cherrick GR, Stein SW, Leevy CM, Davidson CS. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960;39:592–600. https://doi.org/10.1172/JCI104072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Faybik P, Hetz H. Plasma disappearance rate of indocyanine green in liver dysfunction. Transplant Proc. 2006;38:801–2. https://doi.org/10.1016/j.transproceed.2006.01.049.

    Article  CAS  PubMed  Google Scholar 

  46. Daskalaki D, Fernandes E, Wang X, et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014;21:615–21. https://doi.org/10.1177/1553350614524839.

    Article  PubMed  Google Scholar 

  47. Zhang YM, Shi R, Hou JC, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–8. https://doi.org/10.1007/s00432-016-2267-4.

    Article  CAS  PubMed  Google Scholar 

  48. van der Vorst JR, Schaafsma BE, Hutteman M, et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–8. https://doi.org/10.1002/cncr.28203.

    Article  CAS  PubMed  Google Scholar 

  49. Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115:2491–504. https://doi.org/10.1002/cncr.24291.

    Article  PubMed  Google Scholar 

  50. Alfano MS, Molfino S, Benedicenti S, et al. Intraoperative ICG-based imaging of liver neoplasms: a simple yet powerful tool. Preliminary results. Surg Endosc. 2019;33:126–34. https://doi.org/10.1007/s00464-018-6282-1.

    Article  PubMed  Google Scholar 

  51. Handgraaf HJM, Boogerd LSF, Höppener DJ, et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43:1463–71. https://doi.org/10.1016/j.ejso.2017.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boogerd LS, Handgraaf HJ, Lam HD, et al. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg Endosc. 2017;31:952–61. https://doi.org/10.1007/s00464-016-5007-6.

    Article  PubMed  Google Scholar 

  53. Marino MV, Di Saverio S, Podda M, Gomez Ruiz M, Gomez Fleitas M. The application of Indocyanine green fluorescence imaging during robotic liver resection: a case-matched study. World J Surg. 2019;43:2595–606. https://doi.org/10.1007/s00268-019-05055-2.

    Article  PubMed  Google Scholar 

  54. Liu B, Liu T, Su M, et al. Improving the surgical effect for primary liver cancer with Intraoperative fluorescence navigation compared with Intraoperative ultrasound. Med Sci Monit. 2019;25:3406–16. https://doi.org/10.12659/MSM.916423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clements LW, Collins JA, Weis JA, et al. Deformation correction for image guided liver surgery: an intraoperative fidelity assessment. Surgery. 2017;162:537–47. https://doi.org/10.1016/j.surg.2017.04.020.

    Article  PubMed  Google Scholar 

  56. Heiselman JS, Clements LW, Collins JA, et al. Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery. J Med Imaging. 2018;5:21203. https://doi.org/10.1117/1.JMI.5.2.021203.

    Article  Google Scholar 

  57. Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J. Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr. 2014;3:73–81. https://doi.org/10.3978/j.issn.2304-3881.2014.02.03.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Teatini A, Pelanis E, Aghayan DL, et al. The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection surgery. Sci Rep. 2019;9:18687. https://doi.org/10.1038/s41598-019-54915-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian L, Deguet A, Kazanzides P. ARssist: augmented reality on a head-mounted display for the first assistant in robotic surgery. Healthc Technol Lett. 2018;5:194–200. https://doi.org/10.1049/htl.2018.5065.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Khan S, Beard RE, Kingham PT, Fong Y, Boerner T, Martinie JB, et al. Long-term oncologic outcomes following robotic liver resections for primary hepatobiliary malignancies: a multicenter study. Ann Surg Oncol. 2018;25:2652–60. https://doi.org/10.1245/s10434-018-6629-9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ahmad A, Ahmad ZF, Carleton JD, Agarwala A. Robotic surgery: current perceptions and the clinical evidence. Surg Endosc. 2017;31:255–63. https://doi.org/10.1007/s00464-016-4966-y.

    Article  PubMed  Google Scholar 

  62. Giulianotti PC, Sbrana F, Coratti A, et al. Totally robotic right hepatectomy: surgical technique and outcomes. Arch Surg. 2011;146:844–50. https://doi.org/10.1001/archsurg.2011.145.

    Article  PubMed  Google Scholar 

  63. Einarsson JI, Hibner M, Advincula AP. Side docking: an alternative docking method for gynecologic robotic surgery. Rev Obstet Gynecol. 2011;4(3–4):123–5.

    PubMed  PubMed Central  Google Scholar 

  64. Waters JA, Canal DF, Wiebke EA, et al. Robotic distal pancreatectomy: cost effective? Surgery. 2010;148:814–23. https://doi.org/10.1016/j.surg.2010.07.027.

    Article  PubMed  Google Scholar 

  65. Sarlos D, Kots L, Stevanovic N, von Felten S, Schär G. Robotic compared with conventional laparoscopic hysterectomy: a randomized controlled trial. Obstet Gynecol. 2012;120:604–11. https://doi.org/10.1097/AOG.0b013e318265b61a.

    Article  PubMed  Google Scholar 

  66. Prabhu AS, Carbonell A, Hope W, et al. Robotic inguinal vs transabdominal laparoscopic inguinal hernia repair: the RIVAL randomized clinical trial. JAMA Surg. 2020; https://doi.org/10.1001/jamasurg.2020.0034.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ashraf J, Krishnan J, Turner A, Subramaniam R. Robot docking time: cumulative summation analysis of a procedure-independent learning curve in pediatric urology. J Laparoendosc Adv Surg Tech A. 2018;28:1139–41. https://doi.org/10.1089/lap.2017.0418.

    Article  PubMed  Google Scholar 

  68. Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S. Common uses and cited complications of energy in surgery. Surg Endosc. 2013;27:3056–72. https://doi.org/10.1007/s00464-013-2823-9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mendelson BJ, Feldman JM, Addante RA. Argon embolus from argon beam coagulator. J Clin Anesth. 2017;42:86–7. https://doi.org/10.1016/j.jclinane.2017.08.021.

    Article  PubMed  Google Scholar 

  70. Ousmane ML, Fleyfel M, Vallet B. Venous gas embolism during liver surgery with argon-enhanced coagulation. Eur J Anaesthesiol. 2002;19:225. https://doi.org/10.1017/s0265021502220384.

    Article  CAS  PubMed  Google Scholar 

  71. Stojeba N, Mahoudeau G, Segura P, Meyer C, Steib A. Possible venous argon gas embolism complicating argon gas enhanced coagulation during liver surgery. Acta Anaesthesiol Scand. 1999;43:866–7. https://doi.org/10.1034/j.1399-6576.1999.430815.x.

    Article  CAS  PubMed  Google Scholar 

  72. No Authors listed. Fatal gas embolism caused by overpressurization during laparoscopic use of argon enhanced coagulation. Health Devices. 1994;23(6):257–9.

    Google Scholar 

  73. Palmer M, Miller CW, Van Way CW 3rd, Orton EC. Venous gas embolism associated with argon-enhanced coagulation of the liver. J Invest Surg. 1993;6:391–9. https://doi.org/10.3109/08941939309141626.

    Article  CAS  PubMed  Google Scholar 

  74. Shaikh N, Ummunisa F. Acute management of vascular air embolism. J Emerg Trauma Shock. 2009;2:180–5. https://doi.org/10.4103/0974-2700.55330.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barbash GI, Glied SA. New technology and health care costs—the case of robot-assisted surgery. N Engl J Med. 2010;363:701–4. https://doi.org/10.1056/NEJMp1006602.

    Article  CAS  PubMed  Google Scholar 

  76. Turchetti G, Palla I, Pierotti F, Cuschieri A. Economic evaluation of da Vinci-assisted robotic surgery: a systematic review. Surg Endosc. 2012;26:598–606. https://doi.org/10.1007/s00464-011-1936-2.

    Article  PubMed  Google Scholar 

  77. Higgins RM, Frelich MJ, Bosler ME, Gould JC. Cost analysis of robotic versus laparoscopic general surgery procedures. Surg Endosc. 2017;31:185–92. https://doi.org/10.1007/s00464-016-4954-2.

    Article  PubMed  Google Scholar 

  78. Kim HI, Han SU, Yang HK, et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg. 2016;263:103–9. https://doi.org/10.1097/SLA.0000000000001249.

    Article  PubMed  Google Scholar 

  79. Sham JG, Richards MK, Seo YD, Pillarisetty VG, Yeung RS, Park JO. Efficacy and cost of robotic hepatectomy: is the robot cost-prohibitive? J Robot Surg. 2016;10:307–13. https://doi.org/10.1007/s11701-016-0598-4.

    Article  PubMed  Google Scholar 

  80. Daskalaki D, Gonzalez-Heredia R, Brown M, et al. Financial impact of the robotic approach in liver surgery: a comparative study of clinical outcomes and costs between the robotic and open technique in a single institution. J Laparoendosc Adv Surg Tech A. 2017;27:375–82. https://doi.org/10.1089/lap.2016.0576.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu CY, Chen PD, Chou WH, Liang JT, Huang CS, Wu YM. Is robotic hepatectomy cost-effective? In view of patient-reported outcomes. Asian J Surg. 2019;42:543–50. https://doi.org/10.1016/j.asjsur.2018.12.010.

    Article  PubMed  Google Scholar 

  82. Hilal A, Di Fabio M, Syed S, et al. Assessment of the financial implications for laparoscopic liver surgery: a single-centre UK cost analysis for minor and major hepatectomy. Surg Endosc. 2013;27:2542–50. https://doi.org/10.1007/s00464-012-2779-1.

    Article  PubMed  Google Scholar 

  83. Finch RJ, Malik HZ, Hamady ZZ, et al. Effect of type of resection on outcome of hepatic resection for colorectal metastases. Br J Surg. 2007;94:1242–8. https://doi.org/10.1002/bjs.5640.

    Article  CAS  PubMed  Google Scholar 

  84. Stewart GD, O’Súilleabháin CB, Madhavan KK, Wigmore SJ, Parks RW, Garden OJ. The extent of resection influences outcome following hepatectomy for colorectal liver metastases. Eur J Surg Oncol. 2004;30:370–6. https://doi.org/10.1016/j.ejso.2004.01.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Stewart MD.

Ethics declarations

Conflict of interest

Y. Fong has the following disclosures, all unrelated to the writing of this manuscript: scientific consultant for Intuitive, Medtronic, Johnson & Johnson, and Olympus. C. Stewart declares that she has no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, C., Fong, Y. Robotic liver surgery—advantages and limitations. Eur Surg 53, 149–157 (2021). https://doi.org/10.1007/s10353-020-00650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-020-00650-3

Keywords

Navigation