Skip to main content
Log in

Reef-building red algae from an uppermost Permian reef complex as a fossil analogue of modern coralline algal ridges

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Calcareous red algae have been important components in reefal facies since the Mesozoic but their volumetric contribution to Palaeozoic reefs was usually low. Here, we report a reef-building community dominated by Parachaetetes, a genus of solenoporacean red algae, overgrowing uppermost Permian sponge reefs in Cili (Hunan Province, South China). The fossil assemblage in the community consists of about 88% Parachaetetes, 7% rugose corals, and 5% reef-dwelling organisms, including gastropods, brachiopods, foraminifera and Tubiphytes. Although the biodiversity of this community is far lower than that in modern reefs, the association of red algae and rugose corals shares several attributes with the coral–coralline algal communities of modern tropical reefs. Analysis of sedimentary facies indicates that the reef-building Parachaetetes grew in a turbulent setting near the margin of a carbonate platform, perhaps in a reef-crest environment known from modern coralgal reefs. Although calcifying red algae have been recorded from the Cambrian onwards, this is the oldest site where crustose red algae played a dominant role in reef construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Feng et al. 1997) indicating the position of the Daluokeng algal–coral reef (29° 25′ 10.7″ N, 110° 55′ 6.39″ E)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguirre J, Barattolo F (2001) Presence of nemathecia in Parachaetetes asvapatii Pia, 1936 (Rhodophyta, Gigartinales?): reproduction In ‘Solenoporaceans’ revisited. Palaeontology 44(6):1113–1125

    Article  Google Scholar 

  • Aguirre J, Baceta JI, Braga JC (2007) Recovery of marine primary producers after the Cretaceous-Tertiary mass extinction: Paleocene calcareous red algae from the Iberian Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 249(3–4):393–411

    Article  Google Scholar 

  • Anderson KD, Beauchamp B (2014) Paleobiology and paleoecology of Palaeoaplysina and Eopalaeoaplysina new genus in Arctic Canada. J Paleontol 88(5):1056–1071

    Article  Google Scholar 

  • Arias CP, Masse JP, Vilas L (1995) Hauterivian shallow marine calcareous biogenic mounds: S.E. Spain. Palaeogeogr Palaeoclimatol Palaeoecol 119(1–2):3–17

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292(5522):1701–1704

    Article  Google Scholar 

  • Bassi D (1998) Coralline algal facies and their palaeoenvironments in the Late Eocene of Northern Italy (Calcare di Nago, Trento). Facies 39(1):179–201

    Article  Google Scholar 

  • Belka Z (1979) Shallow-water Solenoporaceae and their environmental adaptation, Upper Permian of the Holy Cross Mts. Bull Cent Rech Explor Prod 3(2):443–452

    Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175(1):27–41

    Article  Google Scholar 

  • Broadhurst FM, Simpson IM (1973) Bathymetry on a Carboniferous reef. Lethaia 6(4):367–381

    Article  Google Scholar 

  • Brooke C, Riding R (1998) Ordovician and Silurian coralline red algae. Lethaia 31(3):185–195

    Article  Google Scholar 

  • Brown A (1894) On the structure and affinities of the Genus Solenopora together with descriptions of new species. Geol Mag 1(05):154–161

    Article  Google Scholar 

  • Checconi A, Bassi D, Passeri L, Rettori R (2007) Coralline red algal assemblage from the Middle Pliocene shallow-water temperate carbonates of the Monte Cetona (Northern Apennines, Italy). Facies 53(1):57–66

    Article  Google Scholar 

  • Chen ME, Liu KW (1986) The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites. Chin J Geol 27(1):46–53 (in Chinese with English summary)

    Google Scholar 

  • Dullo WC (2005) Coral growth and reef growth: a brief review. Facies 51(1–4):33–48

    Article  Google Scholar 

  • Elliott GF (1964) Tertiary Solenoporacean algae and the reproductive structures of the Solenoporaceae. Paleontol 7:695–702

    Google Scholar 

  • Elliott GF (1973) A Miocene solenoporoid alga showing reproductive structures. Paleontol 16:223–230

    Google Scholar 

  • Emmerich A, Zamparelli V, Bechstädt T, Zühlke R (2005) The reefal margin and slope of a Middle Triassic carbonate platform: the Latemar (Dolomites, Italy). Facies 50(3–4):573–614

    Article  Google Scholar 

  • Fan GH, Wang YB, Kershaw S, Li GS, Meng Z, Lin QX, Yuan ZM (2014) Recurrent breakdown of Late Permian reef communities in response to episodic volcanic activities: evidence from southern Guizhou in South China. Facies 60(2):603–613

    Article  Google Scholar 

  • Fan JS, Wu YS (2002) On some Permian calcareous algae from Guangxi, Guizhou provinces and east Sichuan, and their paleoecological environments. Acta Micropalaeontol Sin 19(4):337–347 (in Chinese with English summary)

    Google Scholar 

  • Fan JS, Zhang W (1987) On some Inozoan, Pharetronida (Clacispongea) and Tabulozoan (Sclerospongiae) from Upper Permian reefs, Lichuan country, west Hubei, China. Sci Geol Sin 4:326–333 (in Chinese with English summary)

    Google Scholar 

  • Fan JS, Zhang W, Ma X, Zhang YB, Liu HB (1982) The Upper Permian reefs in Lichuan district. West Hubei. Sci Geol Sin 7(3):274–282 (in Chinese with English summary)

    Google Scholar 

  • Feng QL, Gong YM, Riding R (2010) Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J Paleontol 84(4):569–587

    Article  Google Scholar 

  • Feng ZZ, Yang YQ, Jin ZK (1997) Lithofacies paleogeography of the Permian of South China. University of Petroleum Press, Shandong, pp 79–88 (in Chinese)

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks. Springer, Berlin

    Book  Google Scholar 

  • Flügel E, Kochansky-Devidé V, Ramovš A (1984) A Middle Permian calcisponge/algal/cement reef: Straža near bled. Slovenia Facies 10(1):179–255

    Article  Google Scholar 

  • Forsythe GT (2003) A new synthesis of Permo-Carboniferous phylloid algal reef ecology. pp. 171–188. In W. M. Ahr, P. M. Harris, W. A. Morgan, and I. D. Somerville, eds. Permo-Carboniferous carbonate platforms and reefs. SEPM Special Publication No. 78 and AAPG Memoir 83, Tulsa.

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41(5):963–984

    Article  Google Scholar 

  • Gong EP, Samankassou E, Guan CQ, Zhang YL, Sun BL (2007) Paleoecology of Pennsylvanian phylloid algal buildups in south Guizhou, China. Facies 53(4):615–623

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (2003) Taphonomic alteration of reef corals: effects of reef environment and coral growth form II: the Florida Keys. Palaios 18:495–509

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10(6):578–596

    Article  Google Scholar 

  • Hallock P (2005) Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes. Sediment Geol 175(1–4):19–33

    Article  Google Scholar 

  • Heckel PH (1975) Solenoporid red algae (Parachaetetes) from Upper Pennsylvanian rocks in Kansas. J Paleontol 49(4):663–673

    Google Scholar 

  • Helm C, Schülke I (1998) A coral-microbialite patch reef from the late Jurassic (florigemma-Bank, Oxfordian) of NW Germany (Süntel mountains). Facies 39(3):75–104

    Article  Google Scholar 

  • Hips K, Haas J, Vidó M, Barna Z, Jovanović D, Sudar MN, Siklósy Z (2011) Selective blackening of bioclasts via mixing-zone aragonite neomorphism in Late Triassic limestone, Zlatibor Mountains. Serbia Sedimentol 58(4):854–877

    Article  Google Scholar 

  • Huang SJ (1990) Cathodoluminescence and diagenetic alteration of marine carbonate minerals. Sediment Facies Palaeogeogr 1990(4):9–15 (in Chinese with English summary)

    Google Scholar 

  • Hubbard DK, Zankl H, Heerden IV, Gill IP (2005) Holocene reef development along the Northeastern St. Croix Shelf, Buck Island U.S. Virgin Islands. J Sedimentary Res 75(1):97–113

    Article  Google Scholar 

  • Insalaco E (1996) Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 121(3–4):169–194

    Article  Google Scholar 

  • Johnson JH (1960) Paleozoic Solenoporaceae and related red algae. Quart Colorado School Mines 55:1–77

    Google Scholar 

  • Juan C, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175(1):27–41

    Google Scholar 

  • Kawamura T, Machiyama H (1995) A Late Permian coral reef complex, South Kitakami Terrane, Japan. Sediment Geol 99(3–4):135–150

    Article  Google Scholar 

  • Kiessling W (2005) Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410–413

    Article  Google Scholar 

  • Kiessling W (2009) Geologic and biologic controls on the evolution of reefs. Annu Rev Ecol Evol Syst 40:173–192

    Article  Google Scholar 

  • Kiessling W (2002) Secular variations in the Phanerozoic reef ecosystem. In Kiessling W, Flügel E, Golonka J (eds.) Phanerozoic reef patterns. SEPM special publication, v. 72, Tulsa, pp 625–690

  • Kishore S, Misra PK, Pandey DK, Jauhri AK, Bahadur T, Singh SK, Chauhan RS, Tripathi SK (2012) Coralline algae from the Aramda Reef Member of the Chaya Formation, Mithapur, Gujarat. J Geol Soc India 80(2):215–230

    Article  Google Scholar 

  • Kuss J (1990) Middle Jurassic calcareous algae from the circum-Arabian area. Facies 22(1):59–85

    Article  Google Scholar 

  • Kuss J, Conrad MA (1991) Calcareous algae from Cretaceous carbonates of Egypt, Sinai, and southern Jordan. J Paleontol 65(05):869–882

    Article  Google Scholar 

  • Li Y, Mu XN, Kershaw S (2002) Microbialites and calcareous algae from reefal facies of the Ningqiang Formation (Telychian, Silurian), South Shaanxi and North Sichuan. Acta Micropalaeontol Sin 19(2):170–177 (in Chinese with English summary)

    Google Scholar 

  • Li Y, Wu YS, Jiang HX (2018) Taphonomic characteristics of a Permian calcisponge reef in Lichuan, Hubei Province and its paleoenvironmental significance. Acta Palaeontologica Sinica 57:212–227 (in Chinese with English summary)

    Google Scholar 

  • Lu TQ, Wen YC, Qiang ZT, Fan JS (1998) Reef-building model of Permian sponge reefs in South China. Acta Palaeontol Sin 37(4):513–516 (in Chinese with English summary)

    Google Scholar 

  • Martindale RC, Corsetti FA, Bottjer DJ, Senowbari-Daryan B (2012) Microbialite fabrics and diminutive skeletal bioconstructors in Lower Norian Summit Point Reefs, Oregon, United States. Palaios 27(7):489–508

    Article  Google Scholar 

  • Martindale RC, Krystyn L, Bottjer DJ, Corsetti FA, Senowbari-Daryan B, Martini R (2013) Depth transect of an Upper Triassic (Rhaetian) reef from Gosau, Austria: microfacies and community ecology. Palaeogeogr Palaeoclimatol Palaeoecol 376:1–21

    Article  Google Scholar 

  • Minnery GA (1990) Crustose Coralline algae from the flower Garden Banks, Northwestern Gulf of Mexico: controls on distribution and growth morphology. J Sediment Res 60(6):992–1007

    Google Scholar 

  • Misra PK, Kishore S, Singh SK, Jauhri AK (2009) Rhodophycean algae from the Lower Cretaceous of the Cauvery Basin, South India. J Geol Soc India 73(3):325–334

    Article  Google Scholar 

  • Morrow DW, Mayers IR (1978) Simulation of limestone diagenesis—a model based on strontium depletion. Can J Earth Sci 15(3):376–396

    Article  Google Scholar 

  • Moussavian E (1992) On cretaceous bioconstructions: composition and evolutionary trends of crust-building associations. Facies 26(1):117–144

    Article  Google Scholar 

  • Mu XN (1981) Upper Permian calcareous algae from western Guizhou. Acta Palaeontol Sin 20(1):33–48 (in Chinese with English summary)

    Google Scholar 

  • Nakazawa T (2001) Carboniferous reef succession of the Panthalassan open-ocean setting: example from Omi Limestone. Central Japan Facies 44(1):183–210

    Article  Google Scholar 

  • Narbonne GM, Dixon OA (1984) Upper Silurian lithistid sponge reefs on Somerset Island, Arctic Canada. Sedimentology 31(1):25–50

    Article  Google Scholar 

  • Newell ND, Rigby JK, Fischer AG, Whiteman AJ, Hickox JE, Bradley JS (1953) The Permian Reef Complex of the Guadalupe Mountains Region, Texas and New Mexico. W.H Freeman & Company, San Francisco, p 236

    Google Scholar 

  • Payri C, Cabioch G (2003) The systematics and significance of coralline red algae in the rhodolith sequence of the Amédée 4 drill core (South-West New-Caledonia). Palaeogeogr Palaeoclimatol Palaeoecol 204(3):187–208

    Google Scholar 

  • Pia J (1927) Thallophyta. 31–136. In: Hirmer M (ed) Handbuch der Palaobotanik, I: Thallophya, Bryophyta, Pteridophyta. R. Oldenbourg, München, p 708

    Google Scholar 

  • Poignant AF (1977) The Mesozoic red algae: a general survey. In: Flügel E (ed) Fossil algae. Springer, Berlin, Heidelberg, pp 177–189

    Chapter  Google Scholar 

  • Pomar L, Hallock P (2007) Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive versus environmental influence. Geology 35(10):899–902

    Article  Google Scholar 

  • Ridgwell A (2005) A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar Geol 217(3–4):339–357

    Article  Google Scholar 

  • Riding R (2004) Solenopora is a chaetetid sponge, not an alga. Palaeontology 47(1):117–122

    Article  Google Scholar 

  • Riding R, Fan JS (2001) Ordovician Calcified Algae and Cyanobacteria, Northern Tarim Basin Subsurface, China. Palaeontology (Oxford) 44(4):783–810

    Article  Google Scholar 

  • Riding R, Martin JM, Braga JC (1991) Coral-stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology 38(5):799–818

    Article  Google Scholar 

  • Ries JB (2006) Mg fractionation in crustose coralline algae: Geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim Cosmochim Acta 70:891–900

    Article  Google Scholar 

  • Rodríguez-Martínez M, Reitner J (2015) Paleoenvironmental reconstruction of a downslope accretion history: from coralgal-coralline sponge rubble to mud mound deposits (Eocene, Ainsa Basin, Spain). Sediment Geol 330:16–31

    Article  Google Scholar 

  • Rösler A, Pretković V, Novak V, Renema W, Braga JC (2015) Coralline algae from the Miocene Mahakam delta (East Kalimantan, Southeast Asia). Palaios 30(1):83–93

    Article  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  • Sandberg PA (1985) Aragonite cements and their occurrence in ancient limestone. In: Schneidermann N, Harris PM (eds) Carbonate cements: society of economic paleontologists and mineralogists. Special Publication, no 36, pp 33–57

  • Sarkar S, Ghosh AK, Rao GMN (2016) Coralline algae and benthic foraminifera from the Long Formation (middle Miocene) of the Little Andaman Island, India: Biofacies analysis, systematics and palaeoenvironmental implications. J Geol Soc India 87(1):69–84

    Article  Google Scholar 

  • Scoffin TP (1993) The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reef 12(3–4):203–221

    Article  Google Scholar 

  • Senowbari-Daryan B, Link M, Isintek I (2006) Calcareous algae from the Triassic (Anisian reef boulders and Norian reef limestones) of Karaburun, western Turkey. Facies 52(1):129–148

    Article  Google Scholar 

  • Shen JW, Kawamura T, Yang WR (1998) Upper Permian coral reef and colonial rugose corals in northwest Hunan, South China. Facies 39(1):35–65

    Article  Google Scholar 

  • Stanley GDJ (1988) The history of Early Mesozoic reef communities: a three-step process. Palaios 3(2):170–183

    Article  Google Scholar 

  • Stanley GDJ (2003) The evolution of modern corals and their early history. Earth Sci Rev 60(3–4):195–225

    Article  Google Scholar 

  • Steneck RS (1982) A limpet-coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63(2):502–522

    Article  Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9(1):44–61

    Article  Google Scholar 

  • Takayanagi H, Iryu Y, Yamada T, Oda M, Yamamoto K, Sato T, Chiyonobu S, Nishimura A, Nakazawa T, Shiokawa S (2007) Carbonate deposits on submerged seamounts in the northwestern Pacific Ocean. Island Arc 16(3):394–419

    Article  Google Scholar 

  • Teichert S, Woelkerling W, Munnecke A (2019) Coralline red algae from the Silurian of Gotland indicate that the order Corallinales (Corallinophycidae, Rhodophyta) is much older than previously thought. Palaeontology 62(4):599–613

    Article  Google Scholar 

  • Tucker ME, Hollingworth NTJ (1986) The Upper Permian (EZ1) reef of North East England: diagenesis in a marine to evaporitic setting. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin, pp 270–290

    Chapter  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, New York

    Book  Google Scholar 

  • Wang SH, Fan JS, Rigby JK (1996) The characteristics and development of the Permian reefs in Ziyun county, south Guizhou, China. Acta Sedimentol Sin 14:66–74 (in Chinese with English summary)

    Google Scholar 

  • Wang SH, Qiang ZT (1992) Upper Permian Jianshuigou reef in Huaying Mountains, Sichuan. Oil Gas Geol 12:147–154 (in Chinese with English summary)

    Google Scholar 

  • Wang YB, Xu GR, Lin QX (1997) Paleoecological relations between coral reef and sponge reef of Late Permian in Cili area, west Hunan Province. Earth Sci J China Univ Geosci 22(2):135–138 (in Chinese with English summary)

    Google Scholar 

  • Webb GE (1996) Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43(6):947–971

    Article  Google Scholar 

  • Weidlich O, Bernecker M, Flügel E (1993) Combined quantitative analysis and microfacies studies of ancient reefs: an integrated approach to Upper Permian and Upper Triassic reef carbonates (Sultanate of Oman). Facies 28(1):115–144

    Article  Google Scholar 

  • Wood R, Dickson JAD, Kirkland BL (1996) New observations on the ecology of the Permian Capitan reef, Texas and New Mexico. Palaeontology 39(3):733–762

    Google Scholar 

  • Wood R, Dickson JAD, Kirkland-George B (1994) Turning the Capitan Reef Upside down: a new appraisal of the ecology of the Permian Capitan Reef, Guadalupe Mountains, Texas and New Mexico. Palaios 9(4):422–427

    Article  Google Scholar 

  • Woodroffe CD, Kennedy DM, Hopley D, Rasmussen CE, Smithers SG (2000) Holocene reef growth in Torres Strait. Mar Geol 170(3):331–346

    Article  Google Scholar 

  • Wray LJ (1969) Paleocene calcareous algae from Libya (Abstract). Symposium on geology of Libya. University of Libya, Tripoli (Abstracts of Papers 21–22)

    Google Scholar 

  • Wray LJ (1972) Environmental distribution of calcareous algae in Upper Devonian reef complexes. Geol Rundsch 61(2):578–584

    Article  Google Scholar 

  • Wray LJ (1977) Calcareous algae. Dev Palaeontol Stratigr 4:185

    Google Scholar 

  • Wray LJ (1970) Algae in reefs through time. In: Proceedings of the North American Paleontological Convention (Chicago, 1969), pp 1359–1373

  • Wright VP (1985) Seasonal banding in the alga Solenopora jurassica from the Middle Jurassic of Gloucestershire. England J Paleontol 59(3):721–732

    Google Scholar 

  • Wu YS (1991) Organisms and communities of Permian Reef of Xiangbo, Calcisponges, hydrozoans, bryozoans, algae, microproblematica. International Academic Publishers, Beijing, pp 1–192

    Google Scholar 

  • Xu GR, Luo XM, Wang YB (1997) On a building model of late Permian Reefs in Central Yangtze River Area. China University of Geosciences Press, Wuhan, pp 45–47 (in Chinese with English summary)

    Google Scholar 

  • Yan JX, Wu M (2006) Synchronized oscillations in Phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: progresses and prospects. Geol Sci Technol Inf 025(003):1–7 (in Chinese with English summary)

    Google Scholar 

  • Zhang YY, Li Y, Munnecke A (2014) Late Ordovician microbial reefs in the Lianglitag Formation (Bachu, Tarim, NW China). Facies 60(2):663–684

    Article  Google Scholar 

  • Zhou HL, Zhang ZX (1993) Early Devonian lithofacies and palaeogeography in South China. Guangxi Geo 6:24–35 (in Chinese with English summary)

    Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (Grants nos. 41730320 and 41572001) and the 111 project (B08030). Co-author WK was supported by the Deutsche Forschungsgemeinschaft (Grant Ki 806/17–2). The editor (Maurice Tucker) provided much assistance with the final version of the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Y., Huang, Y. et al. Reef-building red algae from an uppermost Permian reef complex as a fossil analogue of modern coralline algal ridges. Facies 66, 22 (2020). https://doi.org/10.1007/s10347-020-00606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-020-00606-9

Keywords

Navigation