Skip to main content
Log in

Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The variety of depositional facies of a Lower Jurassic carbonate platform has been investigated on the island of Mallorca along a transect comprising six stratigraphic profiles. Twenty-nine facies and sub-facies have been recognized, grouped into seven facies associations, ranging in depositional environment from supratidal/terrestrial and peritidal to outer platform. Spatial and temporal (2D) facies distribution along the transect reflects the evolution of the carbonate platform with time showing different facies associations, from a broad peritidal platform (stage 1) to a muddy open platform (stage 2), and finally to a peritidal to outer carbonate platform (stage 3). Stage 1 (early Sinemurian to earliest late Sinemurian) corresponds to a nearly-flat peritidal-shallow subtidal epicontinental platform with facies belts that shifted far and fast over the whole study area. The evolution from stage 1 to stage 2 (late Sinemurian) represents a rapid flooding of the epicontinental shallow platform, with more open-marine conditions, and the onset of differential subsidence. During stage 3 (latest Sinemurian), peritidal and shallow-platform environments preferentially developed to the northeast (Llevant Mountains domain) with a rapid transition to middle-outer platform environments toward the northwest (Tramuntana Range domain). Stages 1 and 3 present facies associations typical of Bahamian-type carbonates, whereas stage 2 represents the demise of the Bahamian-type carbonate factory and proliferation of muddy substrates with suspension-feeders. The described platform evolution responded to the interplay between the initial extensional tectonic phases related to Early Jurassic Tethyan rifting, contemporaneous environmental perturbations, and progressive platform flooding related to the Late Triassic–Early Jurassic worldwide marine transgression and associated accommodation changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Álvaro et al. (1989)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Petrol 37:1163–1178

    Google Scholar 

  • Álvaro M, Barnolas A, Cabra P, Comas-Rengifo MJ, Fernández-López SR, Goy A, Del Olmo P, Ramírez del Pozo J, Simo A, Ureta S (1989) El Jurásico de Mallorca (Islas Baleares). Cuad Geol Ibérica 13:67–120

    Google Scholar 

  • Aurell M, Meléndez G, Oloriz F, Bádenas B, Caracuel J, García-Ramos JC, Goy A, Linares A, Quesada S, Robles S, Rodriguez-Tovar FJ, Rosales I, Sandoval J, Suáez de Centi C, Tavera JM, Valenzuela M (2002) Jurassic. In: Gibbons W, Moreno T (eds) The geology of Spain. Geol Soc, London, pp 213–254

    Google Scholar 

  • Aurell M, Robles S, Bádenas B, Rosales I, Quesada S, Meléndez G, García-Ramos JC (2003) Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment Geol 162:239–271

    Google Scholar 

  • Azañón JM, Galindo-Zaldivar J, García-Dueñas V, Jabaloy A (2002) Alpine Tectonics II: Betic Cordillera and Balearic Islands. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc, London, pp 401–416

    Google Scholar 

  • Bádenas B, Aurell M (2010) Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain). Facies 56:89–110

    Google Scholar 

  • Bádenas B, Aurell M, Bosence D (2010) Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian, Lower Jurassic, north-east Spain). Sedimentology 57:1021–1048

    Google Scholar 

  • Barattolo F, Bigozzi A (1996) Dasycladaleans and depositional environments of the Upper Triassic-Liassic carbonate platform of the Gran Sasso (central Apennines, Italy). Facies 35:163–208

    Google Scholar 

  • Barnolas A, Simó A (1984) Sedimentología. In: Barnolas A (ed) Sedimentología del Jurásico de Mallorca: Grupo Español del Mesozoico. IGME-CGS, Madrid, pp 73–119

  • Beales FW (1958) Ancient sediments of Bahamian type. AAPG Bull 42:1845–1880

    Google Scholar 

  • Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Dott RH, Shaver RH (eds) Modern and ancient geosynclinal sedimentation, vol 19. SEPM Spec Publ, Broken Arrow, pp 129–160

    Google Scholar 

  • Bosence DWJ, Wood J, Rose EPF, Qing H (2000) Low- and high frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula). J Geol Soc London 157:61–74

    Google Scholar 

  • Bosence DWJ, Procter E, Aurell M, Kahla AB, Boudagher-Fadel M, Casaglia F, Cirilli S, Mehdie M, Nieto L, Rey J, Scherreiks R, Soussi M, Waltham D (2009) A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from western Tethys. J Sediment Res 79:389–415

    Google Scholar 

  • Boudagher-Fadel MK, Bosence DWJ (2007) Early Jurassic benthic foraminiferal diversification and biozones in shallow-marine carbonates of western Tethys. Senckenb Lethaea 87:1–39

    Google Scholar 

  • Brandano M, Lipparini L, Campagnoni V, Tomassetti L (2012) Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (central Apennines, Italy). Sediment Geol 255–256:29–41

    Google Scholar 

  • Chafiki D, Canérot J, Souhel A, El Hairiri K, Taj Eddine K (2004) The Sinemurian carbonate mud-mounds from central High Atlas (Morocco): stratigraphy, geometry, sedimentology and geodynamic patterns. J Afr Earth Sci 39:337–346

    Google Scholar 

  • Chaudhuri AK (2003) Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession: their environmental and petrogenetic significance. J Earth Syst Sci 114:199–209

    Google Scholar 

  • Colom G (1942) Sobre nuevos hallazgos de yacimientos fosilíferos del Lias medio y superior en la Sierra Norte de Mallorca. Boletín de la Real Sociedad Española de Historia Natural. Tomo 11:221–265

    Google Scholar 

  • Colom G (1966) Dos niveles micropaleontológicos interesantes en el Lias inferior del Sur de España y baleares. Acta Geologica Hispanica 1(3):15–18

    Google Scholar 

  • Colom G (1970) Estudio litológico y micropaleontológico del Lías de la Sierra Norte y porción central de la isla de Mallorca. Memorias de la Real Academia de la Ciencias exactas, físicas y naturales de Madrid. Tomo XXIV, Mem 2

  • Colom G (1980) Estudios sobre las litofacies y micropaleontología del Lias inferior de la isla de Cabrera (Baleares). Rev Esp Micropaleontol 12(1):47–64

    Google Scholar 

  • Colom G, Dufaure P (1962) Présence de la zone à Palaeodasycladus mediterraneus (Pia) dans le Lias moye du Pla de Cuber (Majorque). Comptes Rendus Acad Sci Paris 12:2617–2619

    Google Scholar 

  • Cook HE, Mullins HT (1983) Basin margin environments. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, vol 33. AAPG Mem, pp 540–617

  • Crevello PD (1991) High-frequency carbonate cycles and stacking patterns: interplay of orbital forcing and subsidence on Lower Jurassic rift platforms, High Atlas, Morocco. In: Franseen EK, Watney WL, Kendall CGStC, Ross W (eds) Sedimentary modeling: computer simulations and methods for improved parameter definition, vol 233. Kansas Geological Survey Bulletin, pp 207–230

  • Dahanayake K (1977) Classification of oncoids from the Upper Jurassic carbonates of the French Jura. Sediment Geol 18:337–353

    Google Scholar 

  • Dasgupta P, Manna P (2011) Geometrical mechanism of inverse grading in grain-flow deposits: an experimental revelation. Earth Sci Rev 104:186–198

    Google Scholar 

  • De Graciansky PC, Jacquin T, Hesselbo SP (1998) The Ligurian cycle: an overview of the Lower Jurassic 2nd-order transgressive/regressive facies cycles in Western Europe. In: De Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. SEPM Spec Publ, Broken Arrow, pp 467–479

    Google Scholar 

  • Decarlis A, Lualdi A (2010) Synrift sedimentation on the northern Tethys margin: an example from the Ligurian Alps (Upper Triassic to Lower Cretaceous, Prepiedmont domain, Italy). Int J Earth Sci 100:1589–1604

    Google Scholar 

  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) (2000) Atlas Peri-Tethys, palaeogeographical maps, I-XX. CCGM/CGMW, Paris, p 268

    Google Scholar 

  • Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180

    Google Scholar 

  • Di Stefano P, Galácz A, Mallarino G, Mindszenty A, Vörös A (2002) Birth and early evolution of a Jurassic escarpment: Monte Kumeta, western Sicily. Facies 46:47–50

    Google Scholar 

  • Dott RH, Bourgeois J (1982) Hummocky stratification: significance of its variable bedding sequences. Geol Soc Am Bull 93:663–680

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1, pp 108–121

  • Einsele G (1991) Submarine mass flow deposits and turbidites. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 313–339

    Google Scholar 

  • Einsele G, Seilacher A (1991) Distinction of tempestites and turbidites. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 377–382

    Google Scholar 

  • Embry AF (1993) Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Artic Archipelago. Can J Earth Sci 30:301–320

    Google Scholar 

  • Fallot P (1922) Étude geologique de la sierra de Majorque. Thése détat. Libr. Polytechnique Ch. Béranger, Paris i Liège, p 481

  • Fernández-Bastero S, Velo A, García T, Gago-Duport L, Santos A, García-Gil S, Vilas F (2000) Las glauconitas de la plataforma continental gallega: indicadores geoquímicos del grado de evolución. J Iber Geol 26:233–247

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 984

    Google Scholar 

  • Fornós J, Rodriguea-Perea A, Sabat F (1984) El mesozoico de la Serra de Son Amoixa (Serres de Llevant, Mallorca). I Congreso Español de Geología. Tomo 1, pp 173–185

  • Fugagnoli A, Bassi D (2015) Taxonomic and biostratigraphic reassessment of Lituosepta recoarensis Cati, 1959 (Foraminifera, Lituolacea). J Foramin Res 45(4):402–412

    Google Scholar 

  • Gabilly J, Carou E, Hantzpergue P (1985) Les grandes discontinuités stratigraphiques au Jurassique: témoins d’événements eustatiques, biologiques et sédimentaires. Bull Soc géol Fr 1(3):391–401

    Google Scholar 

  • Gelabert B (1997) La estructura geológica de la mitad occidental de la isla de Mallorca. PhD Thesis. Colección MEMORIAS (IGME), pp 129

  • Hallam A (1981) A revised sea-level curve for the early Jurassic. J Geol Soc London 138:735–743

    Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37

    Google Scholar 

  • Harder H (1980) Syntheses of glauconite at surface temperatures. Clays Clay Min 28:217–222

    Google Scholar 

  • Harris PM (1986) Depositional environments of carbonate platforms. In: Warme JE, Shanley KW (eds) Carbonate depositional environments, modern and ancient, Part 2: carbonate platforms. Colorado School of Mines Quarterly 80(4):31–60

  • Jacquin T, De Graciansky PC (1998) Major transgressive/regressive cycles: the strati-graphic signature of European basin development. In: De Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence Stratigraphy of European basins, vol 60. SEPM Spec Publ, Broken Arrow, pp 15–29

    Google Scholar 

  • James NP (1984) Shallowing-upward sequences in carbonates. In: Walker RG (ed) Facies models. Geoscience Canada, pp 213–228

  • Jenkyns HC, Weedon GP (2013) Chemostratigaphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset, and palaeoenvironmental implications. Newsl Stratigr 46:1–21

    Google Scholar 

  • Leinfelder R (1987) Formation and significance of black pebbles from Ota limestone (Upper Jurassic, Portugal). Facies 17:159–170

    Google Scholar 

  • Marino M, Santantonio M (2010) Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sediment Geol 225:116–137

    Google Scholar 

  • Martín-Chivelet J, Palma RM, López-Gómez J, Kietzmann DA (2011) Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina). Sediment Geol 235:210–221

    Google Scholar 

  • Martinuš M, Bucković D, Kukoč D (2012) Discontinuity surfaces recorded in shallow-marine platform carbonates: an example from the early Jurassic of the Velebit Mt. (Croatia). Facies 58:649–669

    Google Scholar 

  • Masetti D, Figus B, Jenkyns HC, Barattolo F, Mattioli E, Posenato R (2017) Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (early Jurassic) of the Tethyan region: evidence from the Southern Alps (northern Italy). Geol Mag 154:625–650

    Google Scholar 

  • Mazzullo SJ (1977) Shrunken (geopetal) ooids: evidence of origin unrelated to carbonate-evaporite diagenesis. J Sediment Petrol 47:392–397

    Google Scholar 

  • Mehdi M, Neuweiler F, Wilmsen M (2003) Les formations du Lias inférieur du Haut Atlas central de Rich (Maroc): précisions lithostratigraphiques et étapes de l’évolution du bassin. Bull Soc géol Fr 174:227–242

    Google Scholar 

  • Merino-Tomé O, Della Porta G, Kenter JAM, Verwer K, Harris P, Adams EW, Playton T, Corrochano D (2012) Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustasy and carbonate production. Sedimentology 59:118–155

    Google Scholar 

  • Miller CR, James NP, Kyser TK (2013) Genesis of blackened limestone clasts at Late Cenozoic subaerial exposure surfaces, Southern Australia. J Sediment Res 83:339–353

    Google Scholar 

  • Paredes R, Comas-Rengifo MJ, Duarte LV (2013) Dynamics of upper Sinemurian macrobenthic groups (bivalves and brachiopods) preserved in organic-rich facies of the Lusitanian basin (western Iberia). In: Rocha R, Pais J, Kullberg JC, Finney S (eds) STRATI 2013: first international congress on stratigraphy at the cutting edge of stratigraphy. Springer, Berlin, pp 1049–1052

    Google Scholar 

  • Payros A, Pujalte V, Tosquella J, Orue-Etxebarria X (2010) The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): an analogue of future shallow-marine carbonate systems? Sediment Geol 228:184–204

    Google Scholar 

  • Pedersen GK (1985) Thin, fine-grained storm layers in a muddy shelf sequence: an example from the Lower Jurassic in the Stenlille 1 well, Denmark. J Geol Soc London 142:357–374

    Google Scholar 

  • Pomoni-Papaioannou F, Kostopoulou V (2008) Microfacies and cycle stacking pattern in Liassic peritidal carbonate strata, Gavrovo-Tripolitza platform, Peloponnesus, Greece). Facies 54:417–431

    Google Scholar 

  • Pratt BR, James NP, Cowan CA (1992) Peritidal carbonates. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, Newfoundland, pp 303–322

    Google Scholar 

  • Prescott DM (1988) The geochemistry and palaeoenvironmental significance of iron pisoliths and ferromanganese crusts from the Jurassic of Majorca, Spain. Eclogae Geol Helv 81:387–414

    Google Scholar 

  • Preto N, Breda A, Dal Corso J, Franceschi M, Rocca F, Spada C, Roghi G (2017) The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): a prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. Mar Petrol Geol 79:394–411

    Google Scholar 

  • Quesada S, Robles S, Rosales I (2005) Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque-Cantabrian basin, northern Spain. J Geol Soc Lond 162:531–548

    Google Scholar 

  • Ramos-Guerrero E, Rodriguez-Perea A, Sabat F, Serra-Kiel J (1989) Cenozoic tectosedimentary evolution of Mallorca Island. Geodin Acta 3(1):53–72

    Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Heidelberg, pp 21–51

    Google Scholar 

  • Riding JB, Leng MJ, Kender S, Hesselbo SP, Feist-Burkhardt S (2013) Isotopic and palynological evidence for a new Early Jurassic environmental perturbation. Palaeogeogr Palaeoclimatol Palaeoecol 374:16–27

    Google Scholar 

  • Robles S, Quesada S (1995) La rampa dominada por tempestades del Lías inferior de la zona occidental de la Cuenca Vascocantábrica. Libro de Comunicaciones, XIII Congreso Español de Sedimentología, Teruel, pp 109–110

  • Romano R, Barattolo F, Masetti D (2005) Biostratigraphic evidence of the middle Liassic hiatus in the Foza section (eastern sector of the Trento Platform, Calcari Grigi Formation, Venetian Prealps). Boll Soc Geol Ital 124:301–312

    Google Scholar 

  • Rosales I, Barnolas A, Goy A, Sevillano A, Armendáriz M, López-García JM (2018) Isotope records (C-O-Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 497:168–185

    Google Scholar 

  • Ruiz-Ortiz PA, Bosence DW, Rey J, Nieto LM, Castro JM, Molina JM (2004) Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Res 16:235–257

    Google Scholar 

  • Rychliński T, Uchman A, Gaździcki A (2018a) Lower Jurassic Bahamian-type facies in the Choč Nappe (Tatra Mts, West Carpathians, Poland) influenced by palaeocirculation in the Western Tethys. Facies 64:15

    Google Scholar 

  • Rychliński T, Gaździcki A, Uchman A (2018b) Dasycladacean alga Palaeodasycladus in the northern Tethys (West Carpathian, Poland) and its new palaeogeographic range during the Early Jurassic. Swiss J Geosci. https://doi.org/10.1007/s00015-018-0301-z

    Article  Google Scholar 

  • Sabat F (1986) Estructura Geològica de les Serres de Llevant de Mallorca (Balears). PhD Thesis. Universitat de Barcelona, pp 128

  • Santantonio M, Fabbi S, Aldega L (2016) Mesozoic architecture of a tract of the European-Iberian continental margin: insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, southern Italy). Sediment Geol 331:94–113

    Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology, vol 8. p 200. https://doi.org/10.2110/csp.05.08

  • Scotese CR, Schettino A (2017) Late Permian–Early Jurassic Paleogeography of Western Tethys and the World. In: Soto JI, Flinch JF, Tari G (eds) Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, London, pp 57–95

    Google Scholar 

  • Schlager W, Reijmer JJG, Droxler A (1994) Highstand shedding of carbonate platforms. J Sediment Res B64(3):270–281

    Google Scholar 

  • Septfontaine M (1984) Biozonation (a l’aide des Foraminifères imperforés) de la plate-forme interne carbonatée liasique du Haut Atlas (Maroc). Rev Micropaléont 27:209–229

    Google Scholar 

  • Sevillano A, Rosales I, Barnolas A, Gil-Peña I, Armendáriz M, Simó JA (2010) Significado y origen microbiano de la costra ferruginosa con estromatolitos pelágicos del Jurásico de Mallorca. In: Ruiz-Omeñaca JI, Piñuea L, García-Ramos JC (eds) Comunicaciones del V Congreso del Jurásico de España. Museo del Jurásico de Asturias, pp 200–203

  • Sevillano A, Bádenas B, Rosales I, Barnolas A, López-García JM (2013) Facies y secuencias de la plataforma carbonatada somera sinemuriense en la isla de Mallorca (Seccion Es Barraca), España. Geogaceta 54:15–18

    Google Scholar 

  • Shinn EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites: a reevaluation. J Sediment Res 53:619–628

    Google Scholar 

  • Soussi M, Ismaïl MHB (2000) Platform collapse and pelagic seamount facies: Jurassic development of central Tunisia. Sediment Geol 133:93–113

    Google Scholar 

  • Soussi M, Enay R, Mangold C, Turki MM (2000) The Jurassic events and their sedimentary and stratigraphic records on the Southern Tethyan margin in Central Tunisia. In: Crasquin-Soleau S, Barrier E (eds) Peri-Tethys, Memoir 5: new data on Peri-Tethyan sedimentary basins, vol 182. Memoires du Museum Natl d’Histoires Nat, pp 57–92

  • Strasser A (1986) Ooids in Purbeck limestones (Lower Cretaceous) of the Swiss and French Jura. Sedimentology 33:711–727

    Google Scholar 

  • Strasser A (1991) Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 709–721

    Google Scholar 

  • Strasser A, Arnaud H, Baudin F, Rohl U (1995) Small-scale shallow-water carbonate sequences of resolution Guyot (Sites 866, 867, and 868). In: Winterer EL, Sager WW, Firth JV, Sinton JM (eds) Proceedings of the ocean drilling program, scientific results, vol 143, pp 119–131

    Google Scholar 

  • Suárez-González P, Quijada EI, Benito MI, Mas R, Merinero R, Riding R (2014) Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sediment Geol 300:11–27

    Google Scholar 

  • Thierry J (2000) Late Sinemurian (193–191 Ma). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biji-DubalB, Brunet MF, Cadet JP, Crasquin S, SandulescuM (eds) Atlas Peri-Tethys. Palaeogeographical Maps—explanatory notes. Commission for the Geologic Map of the World, Paris, pp 49–59

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 496

    Google Scholar 

  • Velić I (2007) Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geol Croat 60:1–113

    Google Scholar 

  • Vera JA, Jiménez de Cisneros C (1993) Palaeogeographic significance of black pebbles (Lower Cretaceous, Prebetic, southern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 102:89–102

    Google Scholar 

  • Vierek A (2010) Source and depositional processes of coarse-grained limestone event beds in Fransian slope deposits (Kostomloty-Mogilki quarry, Holy Cross Mountains, Poland). Geologos 16(3):153–168

    Google Scholar 

  • Vulpuis S, Kiessling W (2018) New constraints on the last aragonite–calcite sea transition from early Jurassic ooids. Facies 64:3. https://doi.org/10.1007/s10347-017-0516-x

    Article  Google Scholar 

  • Wilmsen M, Neuweiler F (2008) Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 55:773–807

    Google Scholar 

  • Wright VP, Azerêdo AC (2006) How relevant is the role of macrophytic vegetation in controlling peritidal carbonate facies? Clues from Upper Jurassic of Portugal. Sediment Geol 186:147–156

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to F. Schlagintweit and M. Septfontaine for helping and review of the benthic foraminifera and algae determinations. BB thanks the research project CGL2017-85038-P subsidized by Ministerio de Economía, Industria y Competitividad of the Spanish Government, and the project E18 (Aragosaurus: Recursos Geológicos y Paleoambientes) of the Government of Aragón. We also thank the reviewers Toni Simó and Mohamed Soussi, and Associated Editor Maurice Tucker, for fruitful reviews and comments that helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sevillano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevillano, A., Rosales, I., Bádenas, B. et al. Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain). Facies 65, 3 (2019). https://doi.org/10.1007/s10347-018-0545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0545-0

Keywords

Navigation