Skip to main content

Advertisement

Log in

Seroepidemiological analyses of rabies virus in two procyonid species from La Venta urban park, in Tabasco, Mexico

  • Research
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

A limited number of meso-carnivores act as reservoirs of the rabies virus (RABV) globally and play a key role in its maintenance in the wild. Rabies virus–neutralizing antibodies (RVNA) indicate a response to rabies vaccination but are also detected in unvaccinated populations suggesting non-fatal exposure. In the ecological park La Venta, in Mexico’s Tabasco state, we conducted a 4-year (from 2009 to 2012) serological survey in order to chart the trends of rabies-neutralizing antibodies in 239 white-nosed coatis (Nasua narica) and 74 raccoons (Procyon lotor). No wild carnivores had been vaccinated in this region. Oral swabs were taken from 44 animals to assess RABV in their saliva. RVNA titers were determined using the rapid fluorescent focus inhibition test (RFFIT). The overall prevalence of RVNA was 19.4% (CI 95% 15.3–24.1). In coatis the prevalence was 16.7% (CI 95% 12.4–21.9) and in raccoons it was 28.4% (CI 95% 19.0–39.4). Variations over time were detected, with two peaks in June 2009 and June 2011, respectively. The median IU/ml was 0.81 (± 0.13) for both species. Antibody titers ranged from 0.24 to 0.90 IU for coatis and from 0.12 to 5.70 IU for raccoons. All saliva samples were negative for RABV, indicating that the animals were not excreting the virus in saliva at the time of collection. The antibody prevalence and titer dynamics are consistent with subclinical infections, suggesting that both species in La Venta have been exposed to RABV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araujo DB, Martorelli LA, Kataoka APGA, Campos ACA, Rodrigues Sanfilippo LF, Cunha ES, Favoretto SR (2014) Antibodies to rabies virus in terrestrial wild mammals in native rainforest on the North Coast of Sao Paulo State. Brazil J Wild Dis 50(3):469–477. https://doi.org/10.7589/2013-04-099 PMID: 24779464

    Article  Google Scholar 

  • Aréchiga-Ceballos N, Velasco-Villa A, Shi M, Flores-Chávez S, Barrón B, Cuevas-Domínguez E, Aguilar-Setién (2010). New rabies virus variant found during an epizootic in white-nosed coatis from the Yucatan Peninsula. Epidemiol Infect 138(11):1586–9. https://doi.org/10.1017/S0950268810000762

  • Ávila-Flores R, Cuéllar-Torres N, García-González FM,  Muñoz-García CI (2019) El estudio de los murciélagos en ambientes urbanos de México: retos y oportunidades (the study of bats from urban environments in Mexico: challenges and opportunities). In: Ramírez-Bautista, A. y Pineda-López, R (Eds.) Manual de métodos en ambientes urbanos. REFAMA-CONACYT-UAQ. México.

  • Benavides JA, Velasco-Villa A, Godino LC, Satheshkumar PS, Ruby N, Rojas-Paniagua E, Streicker DG (2020) Abortive vampire bat rabies infections in Peruvian peridomestic livestock. PLoS Negl Trop Dis 14(6):e0008194.https://doi.org/10.1371/journal.pntd.0008194

  • Bigler WJ, Hoff GL, Smith JS, McLean RG, Trevino HA, Ingwersen J (1983) Persistence of rabies antibody in free-ranging raccoons. J Infect Dis 148(3):610–610. https://doi.org/10.1093/infdis/148.3.610

    Article  CAS  PubMed  Google Scholar 

  • Bourhy H,  Sureau P (1990) Laboratory methods for rabies diagnosis. Institut Pasteur París, France. 197

  • Campos AAS, Santos RN, Benavides JA, Carvalho Ruthner Batista HB, Finoketti F, Wagner PGC, Franco ACC (2019) Rabies surveillance in: wild mammals in south of Brazil Trans bound Emerg Dis 1–8. https://doi.org/10.1111/tbed.13415

  • Carey AB, Mclean RG (1983) The ecology of rabies: evidence of co-adaptation. J Appl Ecol 1:777–800.  https://doi.org/10.2307/2403126 https://www.jstor.org/stable/2403126

  • Casas I, Powell L, Klapper PE, Cleator GM (1995) New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. J Virol Methods 53:25–36. https://doi.org/10.1016/0166-0934(94)00173-E

    Article  CAS  PubMed  Google Scholar 

  • CENAPRECE Rabia canina. Avaliable online: http://www.cenaprece.salud.gob.mx/programas/interior/zoonosis/situacion_casos_rabia.html. Accessed 18 May 2020

  • Chacón-Pacheco J, Bassa-Hernández DJ, Ramírez-Chaves HE (2019) New record of Bassaricyon medius in the Colombian Caribbean. Therya 10(2):201–205. https://doi.org/10.12933/therya-19-695

  • Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjørnstad ON, Krebs JW (2000) Predicting the local dynamics of epizootic rabies among raccoons in the United States. PNAS 97(25):13666–13671. https://doi.org/10.1073/pnas.240326697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyne MJ, Smith G, McAllister FE (1989) Mathematic model for the population biology of rabies in raccoons in the mid-Atlantic states. Am J Vet Res 50(12):2148–2154 PMID: 2610445

    CAS  PubMed  Google Scholar 

  • Crawford-Micksza LK, Wadford DA, Schnurr DP (1999) Molecular epidemiology of enzootic rabies in California. J Clin Virol 14(3):207–219. https://doi.org/10.1016/s1386-6532(99)00054-2

    Article  Google Scholar 

  • Davis R, Nadin-Davis SA, Moore M, Hanlon C (2013) Genetic characterization and phylogenetic analysis of skunk-associated rabies viruses in North America with special emphasis on the central plains. Virus Res 174(1–2):27–36. https://doi.org/10.1016/j.virusres.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  • de Paula A, Antunes JM, de Castro Demoner L, de Andrade M, Cruvinel T, Paula Kataoka A, Alves Martorelli LF, Puglia Machado G, Megid J (2017) Rabies virus exposure of Brazilian free-ranging wildlife from municipalities without clinical cases in humans or in terrestrial wildlife. J Wild Dis 53(3):662–666. https://doi.org/10.7589/2016-09-204

    Article  Google Scholar 

  • Dell’Armelina Rocha PR, Velasco-Villa A, de Lima EM, Salomoni A, Fusaro A, da Conceição Souza E, Negreiros RL, Zafino VL, Zamperin G, Leopardi S, Monne I, Benedictis P (2020) Unexpected rabies variant identified in kinkajou (Potos flavus), Mato Grosso. Brazil Emerg Microbes Infect 9(1):851–854. https://doi.org/10.1080/22221751.2020.1759380

    Article  CAS  PubMed  Google Scholar 

  • Ducrocq J, Proulx JF, Lévesque B, De Serres G, Wood H, Lemire M (2019) Assessment of naturally acquired neutralizing antibodies against rabies Lyssavirus in a subset of Nunavik’s Inuit population considered most at risk of being exposed to rabid animals. Zoonoses Public Health 66(5):533–539. https://doi.org/10.1111/zph.1256

    Article  CAS  PubMed  Google Scholar 

  • Echevarría JE, Avellón A, Juste J, Vera M, Ibáñez C (2001) Screening of active lyssavirus infection in wild bat populations by viral RNA detection on oropharyngeal swabs. J Clin Microbiol 39:3678–3683. https://doi.org/10.1128/JCM.39.10.3678-3683.2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Favoretto SR, De Mattos CC, Morais NB, Carrieri ML, Rolim BN, Silva LM, De Mattos CA (2006) Rabies virus maintained by dogs in humans and terrestrial wildlife in Ceará State, Brazil. Emerg Infect Dis 12:1978–1981. https://doi.org/10.3201/eid1212.060429

  • Gallardo-Romero NF, Aréchiga-Ceballos N, Emerson GL, Martínez-Martínez FO, Doty JB, Nakazawa YJ, Carroll DS (2016) Endemic Orthopxvirus circulating in procyonids in Mexico. J Wild Dis (3):609–15. https://doi.org/10.7589/2015-10-291

  • Garcés-Ayala F, Aréchiga-Ceballos N, Ortiz-Alcántara JM, González-Durán E, Pérez-Agüeros SI, Méndez-Tenorio A, Torres-Longoria B, López-Martínez I, Hernández-Rivas L, Díaz-Quiñonez JA, Ramírez-González JE (2017) Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico. Arch Virol 162(12):3629–3637. https://doi.org/10.1007/s00705-017-3529-4

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AT (2018) Rabies virus vectors and reservoir species. Rev off Int Epizoot 37(2):371–384. https://doi.org/10.20506/rst.37.2.2808

    Article  CAS  Google Scholar 

  • Gilbert AT, Petersen BW, Recuenco S, Niezgoda M, Gómez J, Laguna-Torres VA, Rupprecht CE (2012) Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am J Trop Med Hyg 87(2):206–215. https://doi.org/10.4269/ajtmh.2012.11-0689

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert AT, Fooks AR, Hayman DTS, Horton DL, Muller T, Plowrigh TR, Rupprecht CE (2013) Deciphering serology to understand the ecology of infectious diseases in wildlife. Eco Health 10:298–313. https://doi.org/10.1007/s10393-013-0856-0

    Article  PubMed  Google Scholar 

  • Gold S, Donnelly CA, Nouvellet P, Woodroffe R (2020) Rabies virus-neutralising antibodies in healthy, unvaccinated individuals: what do they mean for rabies epidemiology? PLoS Neglect Trop Dis 14(2), e0007933. https://doi.org/10.1371/journal.pntd.0007933

  • Gompper ME (2004) Correlations of coati (Nasua narica) social structure with parasitism by ticks and chiggers, in: V. Sánchez-Cordero y R.A. Medellín (Eds.), Contribuciones mastozoológicas en homenaje a Bernardo Villa, Instituto de Biología y Ecología, UNAM, México. 527–534

  • Gordon ER, Curns AT, Krebs JW, Rupprecht CE, Real LA, Childs JE (2004) Temporal dynamics of rabies in a wildlife host and the risk of cross-species transmission. Epidemiol Infect 132(3):515–524. https://doi.org/10.1017/s0950268804002067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT,  Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9

  • Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C, Dobson A (2009)  Transmission dynamics and prospects for the elimination of canine rabies. Version 2. PLoS Biol 10;7(3):e53. https://doi.org/10.1371/journal.pbio.1000053

  • Hanlon CA, Niezgoda M, Morrill P, Rupprecht CE (2002) Oral efficacy of an attenuated rabies virus vaccines in skunks and raccoons. J Wild Dis 38(2):420–427. https://doi.org/10.7589/0090-3558-38.2.420

    Article  Google Scholar 

  • Heaton PR, Johnstone P, McElhinney LM, Cowley R, Sullivan EO, Whitby JE (1997) Heminested PCR assay for detection of six genotypes of rabies and rabies related viruses. J Clin Microbiol 35:2762–2766. https://doi.org/10.1128/jcm.35.11.2762-2766.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RE Jr, Beran GW, Clarck WR (1992) Demonstration of rabies virus-specific antibody in the sera of free-ranging iowa raccoons (Procyon lotor). J Wild Dis 28(3):377–385. https://doi.org/10.7589/0090-3558-28.3.377

    Article  Google Scholar 

  • Hirsch BT, Prange S, Hauver S, Gehrt SD (2013) Genetic relatedness does not predict raccoon social network structure. Anim Behav 85:463–470. https://doi.org/10.1371/journal.pone.0075830

    Article  CAS  Google Scholar 

  • Jenkins SR, Perry BD, Winkler WG (1988) Ecology and epidemiology of raccoon rabies. Rev Infect Dis 10 (Supplement_4), S620-S625. https://doi.org/10.1093/clinids/10.Supplement_4.S620

  • Jorge RSP, Pereira MS, Morato RG, Scheffer KC, Carnieli P Jr, Ferreira F, Lima ES (2010) Detection of rabies virus antibodies in Brazilian free-ranging wild carnivores. J Wild Dis 4(4):1310–1315. PMID: 20966286. https://doi.org/10.7589/0090-3558-46.4.1310

  • Krebs JW, Williams SM, Smith JS, Rupprecht CE, Childs JE (2003) Rabies among infrequently reported mammalian carnivores in the United States, 1960–2000. J Wild Dis 39(2):253–261

  • Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Streicker DG, Rupprecht CE (2012) Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathogens 8(6):e1002786. https://doi.org/10.1371/journal.ppat.1002786

  • Lobo D, DeBenedet C, Fehlner-Gardiner C, Nadin-Davis SA, Anderson MEC, Buchanan T, Hopkins J (2018) Raccoon rabies outbreak in Hamilton, Ontario: a progress report. CCDR. 44(5):116–121PMID: 31007622 PMCID: PMC6449115. https://doi.org/10.14745/ccdr.v44i05a05

  • Martínez-Hernández F, Rendón-Franco E, Gama-Campillo LM, Villanueva-García C, Romero-Valdovinos M, Maravilla P, Villalobos G (2014) Follow up of natural infection with Trypanosoma cruzi in two mammals’ species, Nasua narica and Procyon lotor (carnivora: Procyonidae): evidence of infection control. Parasites Vectors 7:405 PMID: 25174672 PMCID: PMC4161768. https://doi.org/10.1186/1756-3305-7-405

  • Moore SM, Hanlon C (2010) Rabies-specific antibodies: measuring of protection against a fatal disease. PloS Neglec Trop Dis 4(3):e595. https://doi.org/10.1371/journal.pntd.0000595

  • Müller T, Freuling CM (2020) Chapter 6 - Rabies in terrestrial animals, In: Anthony R. Fooks & Alan C. Jackson, (Eds.), Rabies (Fourth Edition), Pp. 195–230, Academic Press, ISBN 9780128187050. https://doi.org/10.1016/B978-0-12-818705-0.00006-6

  • OpenEpi. http://www.openepi.com/Menu/OE_Menu.htm

  • Puebla-Rodríguez P, Almazán-Marín C, Garcés-Ayala F, Rendón-Franco E, Chávez-López S, Gómez-Sierra M, Sandoval-Borja A, Martínez-Solís D, Escamilla-Ríos B, Sauri-González I, Alonzo-Góngora A, López-Martínez I, Aréchiga-Ceballos N (2023) Rabies virus in white-nosed coatis (Nasua narica) in Mexico: what do we know so far? Front Vet Sci 10:1090222. https://doi.org/10.3389/fvets.2023.1090222

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinowitz AR, Potgieter LND (1984) Serologic survey for selected viruses in a population of raccoons, Procyon lotor (L.), in the Great Smoky Mountains. J Wild Dis 20(2):146–148. PMID:6330384. https://doi.org/10.7589/0090-3558-20.2.146

  • Ramey PC, Blackwel l BR, Gate s RJ, Slemons RD (2008) Oral rabies vaccination of a Northern Ohio raccoon population: relevance of population density and prebait serology. J Wild Dis 44(3):553–568. PMID: 18689640. https://doi.org/10.7589/0090-3558-44.3.553

  • Reed LJ, Müench H (1938) A simple method of estimating fifty per cent endpoints. Am J Trop Med Hyg 27(3):493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  • Rendón-Franco E, López-Díaz O, Rodríguez-Espinosa O, Rojas-Serranía N, Rodríguez- Cabo-Mercado R, Moreno-Altamirano MMB, Aguilar-Setién A (2019) Comparative leucocyte populations between two sympatric carnivores (Nasua narica and Procyon lotor). Conserv 7(1):coz050. https://doi.org/10.1093/conphys/coz050

  • Rile y SP, Hadidian J, Manski DA (1998) Population density, survival, and rabies in raccoons in an urban national park. Can J Zool 76(6):1153–1164. https://doi.org/10.1139/z98-042

    Article  Google Scholar 

  • Robardet E, Borel C, Moinet M, Jouan D, Wasniewski M, Barrat J, Picard-Meyer E (2017) Longitudinal survey of two serotine bat (Eptesicus serotinus) maternity colonies exposed to EBLV-1 (European Bat Lyssavirus type 1): assessment of survival and serological status variations using capture-recapture models. PLoS Neglec Trop Dis 11(11):e0006048. https://doi.org/10.1371/journalpntd.0006048

  • Rupprecht CE, Hanlon CA, Hemachudha T (2002) Rabies re-examined. The. Lancet Infect Dis 2:377–343. https://doi.org/10.1016/s1473-3099(02)00287-6 PMID: 12144896

    Article  Google Scholar 

  • Shepherd JG, Davis C, Streicker DG, Thomson EC (2023) Emerging Rhabdoviruses and Human Infection Biology 12:878. https://doi.org/10.3390/biology12060878

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Jorge P, Pereira MS, Gonçalves Morato R, Scheffer KC, Carnieli P, Adenílson May-Junior J (2010) Detection of rabies virus antibodies in Brazilian free-ranging wild carnivores. J Wild Dis 46(4), 1310–1315. https://doi.org/10.7589/0090-3558-46.4.1310

  • Szanto AG (2009) Molecular genetics of the raccoon rabies virus. PhD. Thesis, Trent University, Peterborough, Ontario

  • Szanto AG, Nadin-Davis SA, Rosatte RC, White BN (2011) Genetic tracking of the raccoon variant of rabies virus in eastern North America. Epidemics 3(2):76–87. https://doi.org/10.1016/j.epidem.2011.02.002

    Article  PubMed  Google Scholar 

  • Theimer TC, Dyer AC, Keeley BW, Gilbert AT, Bergman DL (2017) Ecological potential for rabies virus transmission via scavenging of dead bats by mesocarnivores. J Wild Dis 53(2):382–385. PMID: 28094609. https://doi.org/10.7589/2016-09-203

  • Valenzuela D (1998) Natural history of the white nosed-coati, Nasua narica, in a tropical dry forest of Western Mexico. RMM 3:26–44. https://doi.org/10.22201/ie.20074484e.1998.3.1.59

    Article  Google Scholar 

  • Vargas-Linares E, Romaní-Romaní F, López-Ingunza R, Arrasco-Alegre JD, Yagui-Moscoso M (2014) Rabia en Potos flavus identificados en el Departamento de Madre de Dios, Perú. Rev Peru Med Exp Salud Publica 31(1):88–93

  • Villalobos G, Muñoz-García CI, Rodríguez-Cabo-Mercado R, Mendoza-Bazán N, Hernández-Ortiz A, Villanueva-García C, Martínez-Hernández F, Rendón-Franco E (2020) Prevalence and epitope recognition of anti-Trypanosoma cruzi antibodies in two Procyonid species: implications for host resistance. Pathogens 9(6): E464. https://doi.org/10.3390/pathogens9060464

  • WHO (2018) Expert Consultation on rabies third report. (WHO technical report series, no. 1012) ISBN 978–92–4–121021–8. ISSN 0512–3054

  • WOAH (2022) Terrestrial animal health code online access. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/

Download references

Acknowledgements

The authors thank the authorities and workers of zoological park “Parque Museo La Venta” for the facilities provided to accomplish the present work and to José Luis Jiménez, Catherine Filejski, and Francisco José Aréchiga-Ceballos for their contributions in reviewing and editing this manuscript in English.

Author information

Authors and Affiliations

Authors

Contributions

E.R.F., N.A.C., C.I.M.G., and C.V.G. conceived and performed the experiments; A.G.B. performed experiments; E.R.F. and N.A.C. performed analyses and wrote the manuscript; L.M.G.C., G.S.A., and A.A.S., secure funding and provided reagents, expertise and feedback. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nidia Aréchiga-Ceballos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 232 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rendón-Franco, E., García-Baltazar, A., Muñoz-García, C.I. et al. Seroepidemiological analyses of rabies virus in two procyonid species from La Venta urban park, in Tabasco, Mexico. Eur J Wildl Res 69, 93 (2023). https://doi.org/10.1007/s10344-023-01722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-023-01722-x

Keywords

Navigation