Skip to main content

Advertisement

Log in

Influence of landscape heterogeneity and meteorological features on small mammal abundance and richness in a coastal wetland system, NW Portugal

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

The abundance and distribution of small mammals are important factors for ecosystem structure and functioning, often affected by spatial heterogeneity and seasonal fluctuations. In this study, we tested the influence of habitat type, landscape composition and meteorological conditions on small mammal abundance and richness in the heterogeneous coastal wetland landscape of Baixo Vouga Lagunar (BVL), NW Portugal. Seven different habitats (Bocage, a mosaic composed of small agricultural and pasture fields separated by live fences of autochthonous vegetation, eucalyptus stands, maize fields, marshlands, reed beds, rice fields and rushes) were sampled every 2 months, between November 2011 and October 2012, resulting in a trapping effort of 18,665 trap-nights. We recorded a total of 1961 captures, including 566 recaptures, of which 1714 (87.4 %) were rodents and 247 (12.6 %) were shrews. Spatially, reed beds presented the highest values of small mammal diversity and favoured this fauna abundance, as well as rushes and marshlands. In contrast, Bocage and eucalyptus stands did not favour most of the species abundance and richness; eucalyptus stands were the habitat with the lowest diversity. Overall, cumulative precipitation favoured the abundance of most species, determining small mammal seasonal fluctuations. At a fine scale, landscape heterogeneity did not seem to influence small mammal abundance and richness. At a broader scale, the landscape matrix appeared to favour small mammal richness and diversity, because species have heterogeneous distribution throughout the patchy landscape. Conservation and management efforts should therefore be focused on wetland natural habitats, considering the remaining habitat types that compose the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angelstam P, Hansson L, Pehrsson S (1987) Distribution borders of field mice Apodemus: the importance of seed abundance and landscape composition. Oikos 50(1):123–130. doi:10.2307/3565408

    Article  Google Scholar 

  • Askew NP, Searle JB, Moore NP (2007) Agri-environment schemes and foraging of barn owls Tyto alba. Agric Ecosyst Environ 118:109–114. doi:10.1016/j.agee.2006.05.003

    Article  Google Scholar 

  • Aulagnier S, Haffner P, Mitchell-Jones AJ, Moutou F, Zima J (2009) Guía de los mamíferos de Europa, del norte de África y de Oriente Medio, 1st edn. Lynx Ediciones, Barcelona

    Google Scholar 

  • Bates D, Bolker B, Maechler M, Walker S (2013) Package ‘lme4’: linear mixed-effects models using Eigen and S4. R package version 1.0-4. Available: http://cran.r-project.org/web/packages/lme4/lme4.pdf. Accessed 1 Oct 2013

  • Boitani L, Loy A, Molinari P (1985) Temporal and spatial displacement of two sympatric rodents (Apodemus sylvaticus and Mus musculus) in a Mediterranean coastal habitat. Oikos 45(2):246–252. doi:10.2307/3565711

    Article  Google Scholar 

  • Bowland JM, Perrin MR (1993) Wetlands as reservoirs of small mammal populations in the Natal Drakensber. S Afr J Wildl Res 23(2):39–43. doi:10.3176/eco.2008.4.05

    Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25. doi:10.2307/2290687

    Google Scholar 

  • Brito R, Pereira A, Quadrado J (2010) Estarreja: Património Natural—BioRia. BioRia – Câmara Municipal de Estarreja, Estarreja

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, USA

    Google Scholar 

  • Canova L (1992) Distribution and habitat preference of small mammals in a biotope of the north Italian plain. Boll Zool 59(4):417–420. doi:10.1080/11250009209386702

    Article  Google Scholar 

  • Canova L, Fasola M (1991) Communities of small mammals in six biotopes of northern Italy. Acta Theriol 36(1-2):73–86

    Article  Google Scholar 

  • Carey AB, Johnson ML (1995) Small mammals in managed, naturally young, and old-growth forests. Ecol Appl 5(2):336–352. doi:10.2307/1942026

    Article  Google Scholar 

  • Corominas IT (1999) Distribution, population dynamics and habitat selection of small mammals in Mediterranean environments: the role of climate, vegetation structure, and predation risk. University of Barcelona, Barcelona

    Google Scholar 

  • Costa J, Aguiar C, Capelo J, Mousã M, Neto C (1998) Biogeografia de Portugal continental. Quercetea 0:5–56

    Google Scholar 

  • de Andreazzi CS, Rademaker V, Gentile R, Herrera HM, Jansen AM, D’Andrea PS (2011) Population ecology of small rodents and marsupials in a semi-deciduous tropical forest of the southeast Pantanal, Brazil. Zoologia (Curitiba) 28(6):762–770. doi:10.1590/S1984-46702011000600009

    Article  Google Scholar 

  • Delattre P, Giraudoux P, Baudry J, Quéré JP, Fichet E (1996) Effect of landscape structure on common vole (Microtus arvalis) distribution and abundance at several space scales. Landsc Ecol 11(5):279–288. doi:10.1007/BF02059855

    Article  Google Scholar 

  • Ecke F, Löfgren O, Hörnfeldt B, Eklund U, Ericsson P, Sörlin D (2001) Abundance and diversity of small mammals in relation to structural habitat factors. Ecol Bull 49:165–171

    Google Scholar 

  • Ecke F, Löfgren O, Sörlin D (2002) Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J Appl Ecol 39:781–792. doi:10.1046/j.1365-2664.2002.00759.x

    Article  Google Scholar 

  • Erlinge S, Göransson G, Hansson L, Högstedt G, Liberg O, Nilsson IN, Nilsson T, Von Schantz T, Sylvén M (1983) Predation as a regulating factor on small rodent populations in southern Sweden. Oikos 40(1):36–52. doi:10.2307/3544197

    Article  Google Scholar 

  • Erlinge S, Hoogenboom I, Agrell J, Nelson J, Sandell M (1990) Density-related home-range size and overlap in adult field voles (Microtus agrestis) in Southern Sweden. J Mammal 71(4):597–603. doi:10.2307/1381799

    Article  Google Scholar 

  • Ernest SKM, Brown JH, Parmenter RR (2000) Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88:470–482. doi:10.1034/j.1600-0706.2000.880302.x

    Article  Google Scholar 

  • Fischer C, Thies C, Tscharntke T (2011) Small mammals in agricultural landscapes: Opposing responses to farming practices and landscape complexity. Biol Conserv 144:1130–1136. doi:10.1016/j.biocon.2010.12.032

    Article  Google Scholar 

  • Fischer CMG, Baldi G, Codesido M, Bilenca D (2012) Seasonal variations in small mammal-landscape association in temperate agroecosystems: a study case in Buenos Aires province, central Argentina. Mammalia 76(4):399–406. doi:10.1515/mammalia-2011-0113

    Article  Google Scholar 

  • Fisler GF (1961) Behaviour of salt-marsh Microtus during winter high tides. J Mammal 42(1):37–43. doi:10.2307/1377238

    Article  Google Scholar 

  • Golley FB (1960) Energy dynamics of a food chain of an old-field community. Ecol Monogr 30(2):187–206. doi:10.2307/1948551

    Article  Google Scholar 

  • Gray SJ, Hurst JL, Stidworthy R, Smith J, Preston R, MacDougall R (1998) Microhabitat and spatial dispersion of the grassland mouse (Mus spretus Lataste). J Zool 246:299–308. doi:10.1017/S0952836998009947

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Gurnell J, Flowerdew JR (2006) Live trapping small mammals: a practical guide, 3rd edn. The Mammal Society, London

    Google Scholar 

  • Hansson L (1979) Food as a limiting factor for small rodent numbers. Oecologia 37:297–314. doi:10.1007/BF00347907

    Article  Google Scholar 

  • Hansson L (1982) Experiments on habitat selection in voles: implications for the inverse distribution of two common European species. Oecologia 52:246–252. doi:10.1007/BF00363844

    Article  Google Scholar 

  • Harrell FE (2013) Package ‘Hmisc’: harrell miscellaneous. R package version 3.12-2. Available: http://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf. Accessed 1 Oct 2013

  • Horváth G, Herczeg R, Tamási K, Sali H (2011) Nestedness of small mammal assemblages and role of indicator species in isolated marshland habitat. Nat Somogyiensis 19:281–302

    Google Scholar 

  • Jensen SP, Gray S, Hurst J (2003) How does habitat structure affect activity and use of space among house mice? Anim Behav 66:239–250. doi:10.1006/anbe.2003.2184

    Article  Google Scholar 

  • Jones C, McShea WJ, Conroy MJ, Hunz TH (1996) Capturing mammals. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity. Standard methods for mammals. Smithsonian Institution Press, Washington, pp 115–155

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113(2):363–375. doi:10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  • Jude DJ, Pappas J (1992) Fish utilization of Great Lakes coastal wetlands. J Gt Lakes Res 18(4):651–672. doi:10.1016/S0380-1330(92)71328-8

    Article  Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as determinant of mammal species richness in high-energy regions. Nature 385:252–254. doi:10.1038/385252a0

    Article  CAS  Google Scholar 

  • Khidas K, Khammes N, Khelloufi S, Lek S, Aulagnier S (2002) Abundance of the wood mouse Apodemus sylvaticus and the Algerian mouse Mus spretus (Rodentia: Muridae) in different habitats of Northern Algeria. Mamm Biol 67:34–41. doi:10.1078/1616-5047-00003

    Google Scholar 

  • Korpimäki E, Brown PR, Jacob J, Pech RP (2004) The puzzles of population cycles and outbreaks of small mammals solved? Bioscience 54(12):1071–1079. doi:10.1641/0006-3568(2004)054[1071:TPOPCA]2.0.CO;2

    Article  Google Scholar 

  • Loman J (2008) Small rodent population synchrony in western Sweden. Effects of landscape structure. Web Ecol 8:14–21. doi:10.5194/we-8-14-2008

    Article  Google Scholar 

  • MacDonald D, Barrett P (1993) Collins field guide: mammals of Britain & Europe. HarperCollins Publishers, Hong Kong

    Google Scholar 

  • Matos M (2011) Vertebrate diversity in the Bussaco Mountain and surrounding areas. University of Aveiro, Aveiro

    Google Scholar 

  • McDonald JH (2008) Handbook of biological statistics, 2nd edn. Sparky House Publishing, Maryland

    Google Scholar 

  • Mendes ES, Ramos Pereira MJ, Marques SF, Fonseca C (2014) A mosaic of opportunities? Spatio-temporal patterns of bat diversity and activity in a strongly humanized Mediterranean wetland. Eur J Wildl Res 60:651–664. doi:10.1007/s10344-014-0832-1

    Article  Google Scholar 

  • Michel N, Burel F, Butet A (2006) How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscape? Acta Oecol 30:11–20. doi:10.1016/j.actao.2005.12.006

    Article  Google Scholar 

  • Michelat D, Giraudoux P (2006) Synchrony between small mammal population dynamics in marshes and adjacent grassland in a landscape of the Jura plateau, France: a ten year investigation. Acta Theriol 51(2):155–162. doi:10.1007/BF03192666

    Article  Google Scholar 

  • Milstead WB, Meserve PL, Campanella A, Previtali MA, Kelt DA, Gutiérrez JR (2007) Spatial ecology of small mammals in North-central Chile: role of precipitation and refuges. J Mammal 88(6):1532–1538. doi:10.1644/16-MAMM-A-407R.1

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. John Wiley & Sons, New Jersey

    Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82(9):2381–2396. doi:10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2

    Article  Google Scholar 

  • Montgomery WI (1989) Population regulation in the wood mouse, Apodemus sylvaticus I density dependence in the annual cycle of abundance. J Anim Ecol 58:465–475. doi:10.2307/4842

    Article  Google Scholar 

  • Montgomery SSJ, Montgomery WI (1990) Intrapopulation variation in the diet of wood mouse Apodemus sylvaticus. J Zool 222:641–651. doi:10.1111/j.1469-7998.1990.tb06020.x

    Article  Google Scholar 

  • Moreno S, Kufner MB (1988) Seasonal patterns in the wood mouse population in Mediterranean scrubland. Acta Theriol 33(7):79–85

    Article  Google Scholar 

  • Muck C, Zeller U (2006) Small mammal communities on cattle and game grazing areas in Namibia. Afr Zool 41(2):215–223. doi:10.3377/1562-7020(2006)41[215:SMCOCA]2.0.CO;2

    Article  Google Scholar 

  • Palomo LJ, Justo ER, Vargas JM (2009) Mus spretus (Rodentia: Muridae). Mamm Species 840:1–10. doi:10.1644/840.1

    Article  Google Scholar 

  • Pearce J, Venier L (2005) Small mammals as bioindicators of sustainable boreal forest management. For Ecol Manag 208:153–175. doi:10.1016/j.foreco.2004.11.024

    Article  Google Scholar 

  • Pounds CJ (1981) Niche overlap in sympatric populations of stoats (Mustela erminea) and weasels (M. nivalis) in North-east Scotland. University of Aberdeen, Aberdeen

    Google Scholar 

  • Proença VM, Pereira HM, Guilherme J, Vicente L (2010) Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecol 36:219–226. doi:10.1016/j.actao.2010.01.002

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available: http://www.Rproject.org/

  • Rosalino LM, Ferreira D, Leitão I, Santos-Reis M (2011) Usage patterns of Mediterranean agro-forest habitat components by wood mice Apodemus sylvaticus. Mamm Biol 76:268–273. doi:10.1016/j.mambio.2010.08.004

    Google Scholar 

  • Sainz-Elipe S, Sáez-Durán S, Galán-Puchades MT, Fuentes MV (2012) Small mammal (Soricomorpha and Rodentia) dynamics after a wildfire in a Mediterranean ecosystem. Mammalia 76:251–259. doi:10.1515/mammalia-2011-0020

    Article  Google Scholar 

  • Saitoh T, Nakatsu A (1997) The impact of forestry on the small rodent community of Hokkaido, Japan. Mammal Study 22(1–2):27–38. doi:10.3106/mammalstudy.22.27

    Article  Google Scholar 

  • Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Response of an avian predator to variation on prey density at a temperate latitude. Ecology 81(9):2428–2441. doi:10.2307/177465

    Article  Google Scholar 

  • Scott D, Joyce C, Burnside N (2008) The influence of habitat and landscape on small mammals in Estonian coastal wetlands. Estonian J Ecol 57(4):279–295. doi:10.3176/eco.2008.4.05

    Article  Google Scholar 

  • Sieg CH (1987) Small mammals: pests or vital components of the ecosystem. In: great plains wildlife damage control workshop proceedings, paper 97. Available: http://digitalcommons.unl.edu/gpwdcwp/97. Accessed 1 Oct 2013

  • Silva M, Hartling L, Opps SB (2005) Small mammals in agricultural landscapes of Prince Edward Island (Canada): effects of habitat characteristics at three different spatial scales. Biol Conserv 126:556–568. doi:10.1016/j.biocon.2005.07.007

    Article  Google Scholar 

  • Singleton GR, Sudarmaji Jacob J, Krebs CJ (2005) Integrated management to reduce rodent damage to lowland rice crops in Indonesia. Agric Ecosyst Environ 107:75–82. doi:10.1016/j.agee.2004.09.010

    Article  Google Scholar 

  • Sponchiado J, Melo GL, Cáceres NC (2012) Habitat selection by small mammals in Brazilian Pampas Biome. J Nat Hist 46(21–22):1321–1335. doi:10.1080/00222933.2012.655796

    Article  Google Scholar 

  • Tapper S (1979) The effect of fluctuating vole numbers (Microtus agrestis) on populations of weasels (Mustela nivalis) on farmland. J Anim Ecol 48(2):603–617. doi:10.2307/4182

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbӧrger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x

    Article  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2011) The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landsc Ecol 26:7–18. doi:10.1007/s10980-010-9549-z

    Article  Google Scholar 

  • Torre I, Tella JL, Arrizabalaga A (1996) Environmental and geographic factors affecting the distribution of small mammals in an isolated Mediterranean mountain. Z Säugetierkd 61:365–375

    Google Scholar 

  • Torre I, Guixé D, Sort F (2010) Comparing three live trapping methods for small mammal sampling in cultivated areas of NE Spain. Hystrix It J Mamm 21(2):147–155. doi:10.4404/Hystrix-21.2-4558

    Google Scholar 

  • Virgós E, Llorente M, Cortés Y (1999) Geographical variation in genet (Genetta genetta L.) diet: a literature review. Mammal Rev 29(2):119–128. doi:10.1046/j.1365-2907.1999.00041.x

    Article  Google Scholar 

  • Watts CHS (1968) The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J Anim Ecol 37(1):25–41. doi:10.2307/2709

    Article  Google Scholar 

  • Watts CHS (1969) The regulation of wood mouse (Apodemus sylvaticus) numbers in Wytham Woods, Berkshire. J Anim Ecol 38(2):285–304. doi:10.2307/2772

    Article  Google Scholar 

  • Wijnhoven S, Van Der Velde G, Leuven RSEW, Smits AJM (2005) Flooding ecology of voles, mice and shrews: the importance of geomorphological and vegetational heterogeneity in river floodplains. Acta Theriol 50(4):453–472. doi:10.1007/BF03192639

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetlands resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74. doi:10.1146/annurev.energy.30.050504.144248

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted in the framework of a research project under an agreement between the Departamento de Biologia, Universidade de Aveiro (DBIO), and the Câmara Municipal de Estarreja (CME). Special thanks to Norberto Monteiro (CME) for the help with fieldwork and to colleagues of the Wildlife Research Unit (DBIO) for their help in planning and executing the fieldwork. Thanks are also due to CUF (Companhia União Fabril) and CESAM (Centre for Environmental and Marine Studies) for providing weather data from their respective meteorological stations. This work was co-supported by the European Funds through COMPETE and the National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013, and by the Observatoire Hommes-Millieus (OHM) Estarreja/CNRS. JP Ferreira had support from Fundação para a Ciência e Tecnologia (SFRH/BPD/72193/2010). We are thankful to the anonymous referee who helped us improving the manuscript. All applicable international, national and/or institutional guidelines for the care and use of animals were followed (ICNF, Instituto da Conservação da Natureza e das Florestas permit no. 387/2011/CAPT and no. 96/2012/CAPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara F. Marques.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Results from the Kruskal-Wallis test performed on small mammal abundance between the three replicates of each habitat for each species (df=2). Significance: *** p<0.001; ** p<0.01; * p<0.05 (PDF 18.5 KB)

ESM 2

Results from the Kruskal-Wallis test performed on small mammal abundance between habitat types for each species (df=1). NA = not applicable. Significance: *** p<0.001; ** p<0.01; * p<0.05 (PDF 63.6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, S.F., Rocha, R.G., Mendes, E.S. et al. Influence of landscape heterogeneity and meteorological features on small mammal abundance and richness in a coastal wetland system, NW Portugal. Eur J Wildl Res 61, 749–761 (2015). https://doi.org/10.1007/s10344-015-0952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-015-0952-2

Keywords

Navigation