Skip to main content

Advertisement

Log in

Dynamics of an expanding black rhinoceros (Diceros bicornis minor) population

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Understanding population dynamics is critical for meta-population management, especially of endangered species, and also for megaherbivore ecology. We employed complete individual life records to construct census data for a reintroduced black rhinoceros population over 22 years since its founding and investigated its dynamics. Akaike’s information criterion applied to scalar models of population growth based on the generalized logistic unambiguously selected an exponential growth model (r = 0.102 ± 0.017), indicating a highly successful reintroduction. No evidence of density dependence was detected, and thus, we could not confirm the threshold model of density dependence that has influenced black rhinoceros meta-population management. Our analysis supported previous work contending that the generalized logistic is unreliable when fitted to data that do not sample the entire range of population sizes. A stage-based matrix model of the exponential population dynamics exhibited mild transient behaviour. We found no evidence of environmental stochasticity, consistent with our previous studies of this population that found no influence of rainfall on demographic parameters. Demographic stochasticity was present, principally reflected in annual sex-specific recruitment numbers that differed from deterministic predictions of the matrix model. Demographically driven process noise should be assumed to be a component of megaherbivore population dynamics, as these populations are typically relatively small, and should be accounted for in managed removals and introductions. Increase in age at first reproduction with increasing population size, as manifested in the study population, may provide a warning of possible density feedback prior to detectable slowing of population growth rate for megaherbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong DP, Seddon PJ (2007) Directions in reintroduction biology. Trends Ecol Evol 23:20–25

    Article  PubMed  Google Scholar 

  • Bonenfant C, Gaillard J, Coulson T, Festa-Bianchet M, Loison A, Garel M, Loe LE, Blanchard P, Pettorelli N, Owen-Smith N, Du Toit J, Duncan PK (2009) Empirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41:314–357

    Google Scholar 

  • Brault S, Caswell H (1993) Pod-specific demography of killer whales (Orcinus orca). Ecology 74:1444–1454

    Article  Google Scholar 

  • Brodie JF, Muntifering J, Hearn M, Loutit B, Loutit R, Brell B, Uri-Khob S, Leader-Williams N, du Preez P (2011) Population recovery of black rhinoceros in north-west Namibia following poaching. Anim Conserv 14:354–362

    Article  Google Scholar 

  • Bronson FH (1989) Mammalian reproductive biology. University of Chicago Press, Chicago

    Google Scholar 

  • Burnham KP, Anderson DW (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Caughley G, Krebs CJ (1983) Are big mammals simply little mammals writ large? Oecologia 59:7–17

    Article  CAS  PubMed  Google Scholar 

  • Chamaillé-Jammes S, Fritz H, Valeix M, Murindagomo F, Clobert J (2008) Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. J Anim Ecol 77:135–144

    Article  PubMed  Google Scholar 

  • Clark F, Brook BW, Delean S, Akçakaya HR, Bradshaw CJA (2010) The theta-logistic is unreliable for modelling most census data. Methods Ecol Evol 1:253–262

    Google Scholar 

  • Cromsigt JPGM, Hearne J, Heitkönig IMA, Prins HHT (2002) Using models in the management of black rhino populations. Ecol Model 149:203–211

    Article  Google Scholar 

  • Dennis B, Munholland PL, Scott JM (1991) Estimation of growth and extinction parameters for endangered species. Ecol Monogr 61:115–143

    Article  Google Scholar 

  • deValpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecol Monogr 72:57–76

    Article  Google Scholar 

  • Eberhardt LL, Breiwick JM, Demaster DP (2008) Analyzing population growth curves. Oikos 117:1240–1246

    Article  Google Scholar 

  • Emslie RH (ed) (2001) Proceedings of a SADC Rhino Management Group (RMG) workshop in biological management to meet continental and national black rhino conservation goals. Giants Castle, 24–26 July 2001

  • Emslie RH, Amin R, Kock R (2009) Guidelines for the in situ re-introduction and translocation of African and Asian rhinoceros. Occasional Paper of the IUCN Species Survival Commission No. 39. IUCN, Switzerland, 115 pp

  • Engen S, Lande R, Sæther B-E, Weimerskirch H (2005) Extinction in relation to demographic and environmental stochasticity in age-structured models. Math Biosci 195:210–227

    Article  PubMed  Google Scholar 

  • Ferreira SM, Greaver CC, Knight MH (2011) Assessing the population performance of the black rhinoceros in Kruger National Park. S Afr J Wildl Res 41:192–204

    Article  Google Scholar 

  • Fike B (2011) The demography and population dynamics of a re-introduced black rhinoceros population on the Great Fish River Reserve, Eastern Cape Province. M.Sc. thesis, Rhodes University

  • Fowler CW (1981) Density dependence as related to life history strategy. Ecology 62:602–610

    Article  Google Scholar 

  • Fowler CW (1987) A review of density dependence in populations of large mammals. In: Genoways HH (ed) Current mammalogy, vol 1. Plenum, New York, pp 401–441

    Chapter  Google Scholar 

  • Freckleton RP, Watkinson AR, Green RE, Sutherland WJ (2006) Census error and the detection of density dependence. J Anim Ecol 75:837–851

    Article  PubMed  Google Scholar 

  • Ganqa NM, Scogings PF (2007) Forage quality, twig diameter, and growth habit of woody plants browsed by black rhinoceros in semi-arid subtropical thicket, South Africa. J Arid Environ 70:514–526

    Article  Google Scholar 

  • Ganqa NM, Scogings PF, Raats JG (2005) Diet selection and forage quality factors affecting woody plant selection by black rhinoceros in the Great Fish River Reserve, South Africa. S Afr J Wildl Res 35:77–83

    Google Scholar 

  • Goodman LA (1969) The analysis of population growth when the birth and death rates depend upon several factors. Biometrics 25:659–681

    Article  CAS  PubMed  Google Scholar 

  • Gough KF, Kerley GIH (2006) Demography and population dynamics in the elephants Loxodonta africana of Addo Elephant National Park, South Africa: is there evidence of density dependent regulation? Oryx 40:434–441

    Article  Google Scholar 

  • Greaver C, Ferreira S, Slotow R (2014) Density-dependent regulation of the critical endangered black rhinoceros population in Ithala Game Reserve, South Africa. Austral Ecol 39:437–447

    Article  Google Scholar 

  • Grøtan V, Sæther B-E, Engen S, Solberg EJ, Linnell JDC, Andersen R, Brøseth H, Lind E (2005) Climate causes large scale spatial synchrony in population fluctuations of a temperate herbivore. Ecology 86:1472–1482

    Article  Google Scholar 

  • Hrabar H, du Toit JT (2005) Dynamics of a protected black rhino (Diceros bicornis) population: Pilanesberg National Park, South Africa. Anim Conserv 8:259–267

  • Knight MH, Kshatriya M, Van Jaarveld AS, Nicholls AO, Hall-Martin AJ (2001) Evaluating herbivore extinction probabilities in Addo Elephant National Park, South Africa. Afr Zool 36:13–22

    Google Scholar 

  • Koons DN, Grand JB, Zinner B, Rockwell RE (2005) Transient population dynamics: relations to life history and initial population size. Ecol Model 185:283–297

    Article  Google Scholar 

  • Lande R, Engen S, Sæther B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford UP, New York

    Book  Google Scholar 

  • Law PR, Linklater WL (2014) Black rhinoceros demography should be stage, not age, based. Afr J Ecol 52:571–573. doi:10.1111/aje.12148

  • Law PR, Fike B, Lent PC (2013) Mortality and female fecundity in an expanding black rhinoceros (Diceros bicornis minor) population. Eur J Wildl Res 59:477–485

    Article  Google Scholar 

  • Law PR, Fike B, Lent PC (2014) Birth sex in an expanding black rhinoceros (Diceros bicornis minor) population. J Mammal 95:349–356

    Article  Google Scholar 

  • Lee PC, Lindsay WK, Moss CJ (2011) Ecological patterns of variability in demographic rates. In: Moss CJ, Croze H, Lee PC (eds) The amboseli elephants: a long term perspective on a long lived mammal. University of Chicago Press, Chicago, pp 74–88

    Chapter  Google Scholar 

  • Lent PC, Fike B (2003) Home ranges, movements and spatial relationships in an expanding population of black rhinoceros in the Great Fish River Reserve, South Africa. S Afr J Wildl Res 33:109–118

    Google Scholar 

  • McCullough DR (1992) Concepts of large herbivore population dynamics. In: McCullough DR, Barrett RG (eds) Wildlife 2001: populations. Elsevier, Barking, pp 967–984

    Chapter  Google Scholar 

  • McCullough DR (1999) Density dependence and life-history strategies of ungulates. J Mammal 80:1130–1146

    Article  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer, Sunderland

    Google Scholar 

  • Nelder JA (1961) The fitting of a generalization of the logistic curve. Biometrics 17:89–110

    Article  Google Scholar 

  • Okita-Ouma B. (2014) Population estimates of eastern black rhinoceros: unravelling the controls. PhD thesis, Wageningen University

  • Okita-Ouma B, Amin R, van Langevelde F, Leader-Williams N (2010) Density dependence and population dynamics of black rhinos (Diceros bicornis michaeli) in Kenya’s rhino sanctuaries. Afr J Ecol 48:791–799

    Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge UP, Cambridge

    Book  Google Scholar 

  • Owen-Smith N (ed) (2010) Dynamics of large herbivore populations in changing environments: towards appropriate models. Wiley-Blackwell, Chichester

    Google Scholar 

  • Polansky L, de Valpine P, Lloyd-Smith JO, Getz WM (2009) Likelihood ridges and multimodality in population growth rate models. Ecology 90:2313–2320

    Article  PubMed  Google Scholar 

  • Sæther B-E, Engen S, Islam A, McCleery R, Perrins C (1998a) Environmental stochasticity and extinction in a population of a small songbird, the great tit. Am Nat 151:441–450

    Article  PubMed  Google Scholar 

  • Sæther B-E, Engen S, Swenson JE, Bakke Ø, Sandegren F (1998b) Assessing the viability of Scandinavian brown bear, Ursus arctos, populations: the effects of uncertain parameter estimates. Oikos 83:403–416

    Article  Google Scholar 

  • Sæther B-E, Engen S, Persson J, Brøseth H, Landa A, Willebrand T (2005) Management strategies for the wolverines in Scandinavia. J Wildl Manage 69:1001–1014

  • Sæther B-E, Engen S, Solberg EJ, Heim M (2007a) Estimating the growth of a newly established moose population using reproductive value. Ecography 30:417–421

    Article  Google Scholar 

  • Sæther B-E, Lillegågard M, Grøtan V, Filli F, Engen S (2007b) Predicting fluctuations of reintroduced ibex populations: the importance of density dependence, environmental stochasticity and uncertain population estimates. J Anim Ecol 76:326–336

    Article  PubMed  Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RE (2007) Developing the science of introduction biology. Conserv Biol 21:303–312

    Article  PubMed  Google Scholar 

  • Shenk TM, White GC, Burnham KP (1998) Sampling-variance effects on detecting density dependence from temporal trends in natural populations. Ecol Monogr 68:445–463

    Article  Google Scholar 

  • Tuckwell HC (1974) A study of some diffusion models of population growth. Theor Popul Biol 5:345–357

    Article  CAS  PubMed  Google Scholar 

  • Turchin P (2003) Complex population dynamics. Princeton UP, Princeton

    Google Scholar 

  • van Lieverloo RJ, Schuiling BF, de Boer WF, Lent PC, de Jong CB, Brown D, Prins HHT (2009) A comparison of faecal analysis with backtracking to determine the diet composition and species preference of the black rhinoceros (Diceros bicornis minor). Eur J Wildl Res 55:505–515

    Article  Google Scholar 

Download references

Acknowledgments

Our collaboration is a by-product of an International Science Liaison Foreign Fellowship, National Research Foundation, Republic of South Africa, PRL shared with W. Linklater (WL) in 2005. We thank WL, for his pivotal role in obtaining this fellowship, bringing the three authors together, and for ongoing dialogue on rhinos, G. Kerley, for hosting WL and PRL during their fellowship at the Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, and the SKKR field rangers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Law.

Additional information

Communicated by H. Kierdorf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, P.R., Fike, B. & Lent, P.C. Dynamics of an expanding black rhinoceros (Diceros bicornis minor) population. Eur J Wildl Res 61, 601–609 (2015). https://doi.org/10.1007/s10344-015-0935-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-015-0935-3

Keywords

Navigation