Skip to main content

Advertisement

Log in

Characterization of Drought Tolerance in Bread Wheat Genotypes Using Physiological Indices

Charakterisierung der Trockentoleranz von Brotweizengenotypen anhand physiologischer Indizes

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Wheat (Triticum aestivum L.) is a staple food in many countries and is regarded as a vital source of nutrition. Drought is one the most prevalent limitations to wheat growth and development. Herein a two year study was conducted using 25 diverse wheat genotypes obtained from the gene pool of various research institutes of Pakistan to characterize their drought tolerance using various physiological indices like relative water content (RWC), relative dry weight (RDW), water saturation deficit (WSD), relative water loss (RWL), flag leaf area (LA), chlorophyll content index (CC) and their association with the grain yield (GY). Analysis of variance (ANOVA) indicated the presence of significant amount of differences and genetic diversity among genotypes under study. Correlation analysis exposed positive association of CC and LA with GY. However, RWC was shown to have a highly significant and negative association with WSD and RWL. Principal component analysis (PCA) showed that out of the 7 PCs only 2 were significant having eigenvalues > 1; cumulatively accounting for 88.70% and 73.03% of the total variation under control and drought stress conditions, respectively. Strikingly the results of the PCA biplots and cluster heat map exposed G1 (Barani-17), G2 (Dharabi-11), G3 (Ehsan-16), G4 (Chakwal-50), G17 (Ujala-2016) and G23 (Kohistan-97) as potential drought tolerant genotypes. Selection of the positively associated indices would be fruitful and the tolerant genotypes having drought tolerance potential could be utilized in future wheat breeding programs to develop high yielding and drought tolerant genotypes.

Zusammenfassung

Weizen (Triticum aestivum L.) ist in vielen Ländern ein Grundnahrungsmittel und gilt als wichtige Nahrungsquelle. Trockenheit ist eine der häufigsten Einschränkungen für das Wachstum und die Entwicklung von Weizen. In einer zweijährigen Studie wurden 25 verschiedene Weizengenotypen aus dem Genpool verschiedener pakistanischer Forschungsinstitute untersucht, um ihre Trockentoleranz anhand verschiedener physiologischer Indizes wie relativer Wassergehalt (RWC), relatives Trockengewicht (RDW), Wassersättigungsdefizit (WSD), relativer Wasserverlust (RWL), Fahnenblattfläche (LA), Chlorophyllgehaltsindex (CC) und deren Zusammenhang mit dem Kornertrag (GY) zu charakterisieren. Die Varianzanalyse (ANOVA) wies auf signifikante Unterschiede und genetische Vielfalt zwischen den untersuchten Genotypen hin. Die Korrelationsanalyse ergab eine positive Assoziation von CC und LA mit dem GY. Es zeigte sich jedoch, dass der RWC einen hoch signifikanten und negativen Zusammenhang mit dem WSD und dem RWL aufweist. Die Hauptkomponentenanalyse (PCA) zeigte, dass von den 7 Hauptkomponenten nur 2 signifikant waren, mit Eigenwerten > 1; kumulativ machten sie 88,70 % und 73,03 % der Gesamtvariation unter Kontroll- bzw. Trockenstressbedingungen aus. Auffallend ist, dass die Ergebnisse der PCA-Biplots und der Cluster Heat Map G1 (Barani-17), G2 (Dharabi-11), G3 (Ehsan-16), G4 (Chakwal-50), G17 (Ujala-2016) und G23 (Kohistan-97) als potenziell trockentolerante Genotypen ausweisen. Die Auswahl der positiv assoziierten Indizes wäre sinnvoll, und die toleranten Genotypen mit Dürretoleranzpotenzial könnten in zukünftigen Weizenzüchtungsprogrammen zur Entwicklung ertragreicher und dürretoleranter Genotypen eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addinsoft (2017) XLSTAT v. 2017.3: Data analysis and statistics software for Microsoft Excel. Addinsoft, Paris

    Google Scholar 

  • Ahmed HGMD, Sajjad M, Li M, Azmat MA, Rizwan M, Maqsood RH, Khan SH (2019) Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability 11(9):2584

    Article  Google Scholar 

  • Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729:139082

    Article  CAS  Google Scholar 

  • Awad W, Byrne PF, Reid SD, Comas LH, Haley SD (2018) Great plains winter wheat varies for root length and diameter under drought stress. Agron J 110:226–235

    Article  CAS  Google Scholar 

  • Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol 43:58–69

    Article  CAS  Google Scholar 

  • Barrs HD (1968) Determination of water deficits in plant tissues. Water Deficits Plant Growth 1:235–368

    Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12. https://doi.org/10.1016/j.plaphy.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  • Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10:1–6

    Article  Google Scholar 

  • Gavuzzi P, Rizza F, Palumbo M, Campanile RG, Ricciardi GL, Borghi B (1997) Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can J Plant Sci 77:523–531

    Article  Google Scholar 

  • Geilfus CM (2019) Drought stress. In: Controlled environment horticulture. Springer, Cham, pp 81–97

    Chapter  Google Scholar 

  • Harman HH (1976) Modern factor analysis, 3rd edn. University of Chicago Press, Chicago, p 376

    Google Scholar 

  • Hussain M, Ashfaq M, Ali A, Hassan S, Imran MA (2017) An econometric analysis of bed-furrow irrigation for cultivated wheat in irrigated areas of Punjab, Pakistan. Pak J Agric Sci 54:467–474

    Google Scholar 

  • Islam MR, Hamid A, Khaliq QA, Ahmed JU, Haque MM, Karim MA (2007) Genetic variability in flooding tolerance of mungbean (Vigna radiata L.Wilczek) genotypes. Euphytica 156:247–255

    Article  Google Scholar 

  • Kabiri R, Nasibi F, Farahbakhsh H (2014) Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Prot Sci 50:43–51

    Article  Google Scholar 

  • Kumawat KR, Sharma N (2018) Effect of drought stress on plants growth. Popul Kheti 6:239–241

    Google Scholar 

  • Mohi-Ud-Din M, Hossain M, Rohman M, Uddin M, Haque M, Ahmed JU, Hossain A, Hassan MM, Mostofa MG (2021) Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 10:879

    Article  CAS  Google Scholar 

  • Muller J (1991) Determining leaf surface area by means of linear measurements in wheat and triticale (brief report). Arch Fruchtungsforsch 21:121–123

    CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  • Rashid M, Sajid MA, Elahi NN, Noreen S, Shah KH (2021) Antioxidant defense system is a key mechanism for drought stress tolerance in wheat (Triticum aestivum L.). Sarhad J Agric 37:348–358

    Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Drought stress tolerance in plants. Springer, Cham, pp 1–16

    Google Scholar 

  • Shuaib M, Zeb A, Ali Z, Ali W, Ahmad T, Khan I (2007) Characterization of wheat varieties by seed storage protein electrophoresis. Afr J Biotechnol 6:497–500

    CAS  Google Scholar 

  • Steel RGD, Torrie JH, Dicky DA (1997) Principles and procedures of statistics, a biometrical approach, 3rd edn. McGraw-Hill, New York, pp 352–358

    Google Scholar 

  • Tasmina T, Khan AR, Karim A, Akter N, Islam R (2016) Physiological changes of wheat varieties under water deficit condition. Bangladesh Agron J 19:105–114

    Article  Google Scholar 

  • Turner NC (1986) Crop water deficit: a decade of progress. Adv Agron 39:1–51

    Article  Google Scholar 

  • Verslues PE (2017) Time to grow: factors that control plant growth during mild to moderate drought stress. Plant Cell Environ 40:177–179. https://doi.org/10.1111/pce.12827

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang Z (2003) Fundamentals of physiology and genetics and breeding in crop drought resistance and water saving. Science Press,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mueen Alam Khan.

Ethics declarations

Conflict of interest

M.A. Khan, H.S.M. A. Iqbal and M.W. Akram declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Iqbal, H.S.M.A. & Akram, M.W. Characterization of Drought Tolerance in Bread Wheat Genotypes Using Physiological Indices. Gesunde Pflanzen 74, 467–475 (2022). https://doi.org/10.1007/s10343-022-00623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00623-4

Keywords

Schlüsselwörter

Navigation