Skip to main content
Log in

Changes in Growth, Yield, Photosynthetic Pigments, Biochemical Substances, Oxidative Damage, and Antioxidant Activities Induced by Treatment with Different pH of Artificial acid rain in Pumpkin (Cucurbita Moschata)

Veränderungen von Wachstum, Ertrag, photosynthetischen Pigmenten, biochemischen Substanzen, oxidativen Schäden und antioxidativen Aktivitäten bei Kürbis (Cucurbita moschata) durch die Behandlung mit künstlichem saurem Regen bei unterschiedlichen pH-Werten

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Acid rain is one of the major environmental problems that causes plant morphological and physiological disorders. But there are few studies about the impact of acid rain on vegetable crops. This work aimed to study the various effects of simulated acid rain (SAR) at different levels of pH (5.0, 4.5, 4.0, 3.5 or 3.0) on growth, yield, pigment content, protein, carbohydrate, water content in leaves, minerals (NPK), oxidative damage and the activity of various antioxidants in pumpkin. The results show that the plant growth, yield, chlorophyll, carotenoids, protein, carbohydrates, leaf water content, NPK in the leaves of the pumpkin crop decreased significantly with increasing levels of acidity of SAR as compared to the untreated set. H2O2 and MDA are increased by SAR treatment which depends on the level of pH value of SAR. The highest value of hydrogen peroxide and malondialdehyde was recorded at pH 3.0 and lower at pH 5.0 of SAR treatment on the pumpkin crop. In contrast, superoxide dismutase, catalase, nitrate reductase and proline contents were accumulated at pH 3.0 and degraded at pH 5.0 of SAR treatment on pumpkin as compared to control. In conclusion, our findings suggest that pumpkin produces more reactive oxygen species (ROS) scavenging SAR stress through the production of enzyme and non-enzyme antioxidant compounds at 3.0 pH. Meanwhile, growth inhibition as well as the photosynthesis of pumpkin and the magnitude of oxidative damage increased as acidity increased (pH 3.0 of SAR).

Zusammenfassung

Saurer Regen ist eines der größten Umweltprobleme, das morphologische und physiologische Störungen bei Pflanzen verursacht. Es gibt jedoch nur wenige Studien über die Auswirkungen von saurem Regen auf Gemüsekulturen. Ziel dieser Arbeit war es, die verschiedenen Auswirkungen von simuliertem saurem Regen (SAR) bei unterschiedlichen pH-Werten (5,0, 4,5, 4,0, 3,5 oder 3,0) auf Wachstum, Ertrag, Pigmentgehalt, Proteine, Kohlenhydrate, Wassergehalt der Blätter, Mineralien (NPK), oxidative Schäden und die Aktivität verschiedener Antioxidanzien bei der Kürbispflanze zu untersuchen. Die Ergebnisse zeigen, dass das Pflanzenwachstum, der Ertrag, der Chlorophyllgehalt, die Carotinoide, die Proteine, die Kohlenhydrate, der Wassergehalt der Blätter und der NPK-Gehalt in den Blättern der Kürbispflanze mit zunehmendem Säuregehalt der SAR im Vergleich zum unbehandelten Versuchsansatz deutlich abnahmen. H2O2 und MDA werden durch die SAR-Behandlung erhöht, was von der Höhe des pH-Werts von SAR abhängt. Der höchste Wert von Wasserstoffperoxid und Malondialdehyd wurde bei einem pH-Wert von 3,0 und ein niedrigerer Wert bei einem pH-Wert von 5,0 bei der SAR-Behandlung der Kürbiskulturen festgestellt. Im Gegensatz dazu wurden Superoxiddismutase, Katalase, Nitratreduktase und Prolin bei pH 3,0 akkumuliert und bei pH 5,0 der SAR-Behandlung am Kürbis im Vergleich zur Kontrolle abgebaut. Zusammenfassend deuten unsere Ergebnisse darauf hin, dass die Kürbispflanze mehr reaktive Sauerstoffspezies (ROS) produziert, die den SAR-Stress durch die Produktion von enzymatischen und nicht enzymatischen antioxidativen Verbindungen bei einem pH-Wert von 3,0 abfangen. Die Wachstumshemmung sowie die Photosyntheserate der Kürbispflanze und das Ausmaß der oxidativen Schäden nahmen mit zunehmendem Säuregrad (pH 3,0 von SAR) zu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbasi T, Poornima P, Kannadasan T (2013) Acid rain: past, present, and future. Int J Environ Eng 5:229–272

    Google Scholar 

  • Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

    CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr 21:389–403

    CAS  Google Scholar 

  • Ahmad G, Khan AA (2019a) Pumpkin: horticultural importance and its roles in various forms; a review. Int J Hortic Agric 4:1–6

    Google Scholar 

  • Ahmad G, Khan AA (2019b) Effect of simulated acid rain and root-knot nematode on plant growth, yield and some biochemical substances in pumpkin crop. J Biol Chem Res 36:92–101

    Google Scholar 

  • Ahmad G, Khan AA (2019c) Eco-friendly use of fly ash for the management of root-knot nematode and acid rain in pumpkin crop. Int J Biotechnol 8:93–103

    Google Scholar 

  • Ahmad G, Khan AA, Mohamed HI (2021) Impact of the low and high concentrations of fly ash amended soil on growth, physiological response and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Pollut Res Int 28:17068–17083

    CAS  PubMed  Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. Journal of Phytopathology. 161:376–381

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52

    CAS  Google Scholar 

  • Arti V, Ashish T, Abdullah A (2010) Impact of simulated acid rain of different pH-levels on some major vegetable plants in India. Rep Opin 2:38–40

    Google Scholar 

  • Bates L, Waldren R, Waldren R (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(3):205–207

    CAS  Google Scholar 

  • Bremner JM, Mulvaney C (1983) Nitrogen-total. In: Methods soil analysis: part 2 chemical microbiological properties. 9, pp 595–624

    Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013) Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol Biochem 64:41–51

    CAS  PubMed  Google Scholar 

  • Chrysargyris A, Xylia P, Botsaris G, Tzortzakis N (2017) Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint ( Mentha spicata L.) affected by the potassium levels. Ind Crop Prod 103:202–221

    CAS  Google Scholar 

  • Clair T, Burns D, Rosas-Pérez I, Blais J, Percy K (2011) Ecosystems. In: Hidy GM, Brook JR, Demerjian KL, Molina LT, Pennell WT, Scheme RD (eds) Technical challenges of multipollutant air quality management, 1st edn. Springer, New York, pp 139–229

    Google Scholar 

  • Debnath B, Irshad M, Mitra S, Li M, Rizwan HM, Liu S, Qiu D (2018) Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. Int J Environ Res 12:203–214

    CAS  Google Scholar 

  • Diatta J, Youssef N, Tylman O, Grzebisz W, Markert B, Drobek L, Wünschmann S, Bebek M, Mitko K, Lejwoda P (2021) Acid rain induced leakage of Ca, Mg, Zn, Fe from plant photosynthetic organs—Testing for deciduous and dicotyledons. Ecol Indic 121:107210

    CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Gholamhoseini M, Joghan AK, Majdi M, Kashkooli AB (2013) The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiol Mol Biol Plants 19(2):189–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi A, Tripathi B (2007) Pollution tolerance and distribution pattern of plants in surrounding area of coal-fired industries. J Environ Biol 28(2):257–263

    CAS  PubMed  Google Scholar 

  • El-Beltagi H, Mohamed HI, Megahed B, Gamal M, Safwat G (2018) Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Frese Environ Bull 27:6369–6378

    CAS  Google Scholar 

  • El-Beltagi H, Mohamed HI, Safwat G, Gamal M, Megahed B (2019b) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanz 71:113–122

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Elmelegy AA, Eldesoky SE, Safwat G (2019a) Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia Ficus Indicia) pulp and peel. Frese Environ Bull 28(2A):1534–1551

    Google Scholar 

  • El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12:4732. https://doi.org/10.3390/su12114732

    Article  CAS  Google Scholar 

  • Foster JR (1990) Influence of pH and plant nutrient status on ion fluxes between tomato plants and simulated acid mists. New Phytol 116:475–485

    CAS  PubMed  Google Scholar 

  • Gilani SAQ, Basit A, Sajid M, Shah ST, Ullah I, Mohamed HI (2021) Gibberellic acid and boron positively enhance antioxidant activity, phenolic contents, and yield quality in Pyrus communis L. Gesunde Pflanz. https://doi.org/10.1007/s10343-021-00555-5

    Article  Google Scholar 

  • Gonzalez L, Gonzalez-Vilar M (2001) Determination of relative water content. Kluwer Academic Publishers, , pp 207–221

    Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257

    PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in the concentrations of proline and total soluble sugers in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 8:455–460

    Google Scholar 

  • Jackson M (1967) Soil Chemical Analysis. Prentice Hall of India Pvt, New Delhi, pp 326–338

    Google Scholar 

  • Jalali M, Naderi E (2012) The impact of acid rain on phosphorus leaching from a sandy loam calcareous soil of western Iran. Environ Earth Sci 66:311–317

    CAS  Google Scholar 

  • Jaworski SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Google Scholar 

  • Kausar S, Khan AA (2009) Interaction of simulated acid rain and seed gall nematode Anguina tritici on wheat. Biol Med 1:100–106

    CAS  Google Scholar 

  • Kausar S, Hussain MA, Khan AA (2010) Response of simulated acid rain on morphological, biochemical and leaf epidermal characteristics of wheat. Trends Biosci 3:34–36

    Google Scholar 

  • Khan AA, Mustabeen K (2013) Observation of simulated acid rain impact on chickpea plant. Ecoprint 20:79–82

    Google Scholar 

  • Khan MR, Khan MW (1994) Effects of simulated acid rain and root-knot nematode on tomato. Plant Pathol 43:41–49

    Google Scholar 

  • Knudsen D, Peterson G, Pratt P (1983) Lithium, sodium, and potassium. In: Methods of soil analysis: part 2 chemical and microbiological properties 9, pp 225–246

    Google Scholar 

  • Kovacik J, Klejdus B, Backor M, Stork F, Hedbavny J (2011) Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology 20:348–357

    CAS  PubMed  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295. https://doi.org/10.3389/fpls.2017.00295

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang W (2013) Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ Sci Poll Res 20:8182–8191

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: methods in enzymology, vol 148. Elsevier, , pp 350–382

    Google Scholar 

  • Liu H, Yi LT, Yuf SQ, Yin XM (2015) Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain. Photosynthetica 53(1):23–28

    CAS  Google Scholar 

  • Liu M, Korpelainen H, Dong L, Yi L (2019) Physiological responses of Elaeocarpus glabripetalus seedlings exposed to simulated acid rain and cadmium. Ecotoxicol Environ Saf 175:118–127

    CAS  PubMed  Google Scholar 

  • Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL (2013) A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome 56:49–60

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madiha Y, Khan AA, Darma ZU (2015) Effect of acid rain on growth of papaya (Carica papaya) and castor (Ricinus communis) plants. J Sci Technol 9:43–37

    Google Scholar 

  • Mohamed HI, Abd-El Hameed AG (2014) Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J Plant Int 9(1):618–626

    CAS  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018a) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Frese Environ Bull 27:7054–7065

    CAS  Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly A, Latif HH (2018b) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Frese Environ Bull 27:8585–8593

    CAS  Google Scholar 

  • Mohamed HI, Elsherbiny E, Abdelhamid M (2016) Physiological and biochemical responses of Vicia faba plants to foliar application of zinc and iron. Gesunde Pflanz 68:201–212

    CAS  Google Scholar 

  • Moustafa-Farag M, Mohamed H, Mahmoud A, Elkelish A, Misra A, Guy K, Kamran M, Ai S, Zhang M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9:724

    CAS  PubMed Central  Google Scholar 

  • Odiyi BO, Bamidele JF (2014) Effects of simulated acid rain on growth and yield of Cassava Manihot esculenta (Crantz). J Agric Sci 6:96–101

    Google Scholar 

  • Odiyi BO, Eniola AO (2015) The effect of simulated acid rain on plant growth component of cowpea (Vigna unguiculata) L. Walps. Jordan J Biol Sci 8:51–54

    CAS  Google Scholar 

  • Pan T, Li Y, Ma C, Qiu D (2015) Calcium affecting protein expression in longan under simulated acid rain stress. Environ Sci Pollut Res 22:12215–12223

    CAS  Google Scholar 

  • Polishchuk OV, Vodka MV, Belyavskaya NA, Khomochkin AP, Zolotareva EK (2016) The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell Tissue Biol 10:250–257

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    CAS  PubMed  Google Scholar 

  • Reis S, Grennfelt P, Klimont Z, Amann M, Apsimon H, Hettelingh J, Holland M, Legall A, Maas R, Posch M et al (2012) From acid rain to climate change. Science 338:1153–1154

    CAS  PubMed  Google Scholar 

  • Ren X, Zhu J, Liu H, Xu X, Liang C (2018) Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress. Ecotoxicol Environ Saf 148:851–856

    CAS  Google Scholar 

  • Rodríguez-Sánchez VM, Rosas U, Calva-Vásquez G, Sandoval-Zapotitla E (2020) Does acid rain alter the leaf anatomy and photosynthetic pigments in urban trees? Plants 9:862. https://doi.org/10.3390/plants9070862

    Article  CAS  PubMed Central  Google Scholar 

  • Savita D (2013) Acid rain-the major cause of pollution: its causes, effects, and solution. Int Sci Eng Technol 2(8):772–775

    Google Scholar 

  • Da Silva L, Alves A, Da Silva E, Oliva M (2005a) Effects of simulated acid rain on the growth of five Brazilian tree species and anatomy of the most sensitive species (Joannesia princeps). Aust J Bot 53:789–796

    Google Scholar 

  • Silva L, Azevedo A, Silva E, Oliva M (2005b) Effects of simulated acid rain on the growth of five Brazilian tree species and anatomy of the most sensitive species (Joannesia princeps). Aust J Bot 53:789–796

    Google Scholar 

  • Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 25:2341

    CAS  PubMed Central  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AM, Soliman A, El-Dougdoug NK (2021a) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26:1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey E, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10:459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021c) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13585-3

    Article  Google Scholar 

  • Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021d) Integrated usage of arbuscular mycorrhizal fungi and chicken waste biochar as economic potential tools to ameliorate antioxidant activity, osmolyte accumulation and salt endogenous hormone-stressed spinach plants. Arch Argo Soil Sci. https://doi.org/10.1080/03650340.2021.1949709

    Article  Google Scholar 

  • De Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) Aba application to maize hybrids contrasting for drought tolerance: Changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73:205–217

    Google Scholar 

  • Sulandjari DWS (2018) Effects of intermittent acid rain on proline and antioxidant content on medicinal plant “Pereskia bleo”. IOP Conf Series Earth Environ Sci 129:12020

    Google Scholar 

  • Wang X, Liu Z, Niu L, Fu B (2013) Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: a proteomic analysis. Trees 27(1):297–309

    Google Scholar 

  • Wen K, Liang C, Wang L, Hu G, Zhou Q (2011) Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84:601–608

    CAS  PubMed  Google Scholar 

  • Zhang L, Qin X, Tang J, Liu W, Yang H (2017) Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl Geochem 77:80–88

    CAS  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2014) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656

    PubMed  Google Scholar 

  • Zhang X, Du Y, Wang L, Zhou Q, Huang X, Sun Z (2015) Combined effects of lanthanum (iii) and acid rain on antioxidant enzyme system in soybean roots. PLoS ONE 10:e134546

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Chairman, Department of Botany, Aligarh Muslim University, Aligarh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

G. Ahmad, A.A. Khan and H.I. Mohamed declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, G., Khan, A.A. & Mohamed, H.I. Changes in Growth, Yield, Photosynthetic Pigments, Biochemical Substances, Oxidative Damage, and Antioxidant Activities Induced by Treatment with Different pH of Artificial acid rain in Pumpkin (Cucurbita Moschata). Gesunde Pflanzen 73, 623–637 (2021). https://doi.org/10.1007/s10343-021-00583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00583-1

Keywords

Schlüsselwörter

Navigation