Skip to main content

Advertisement

Log in

Mitigation of Chromium Toxicity in Wheat (Triticum aestivum L.) Through Silicon

Reduzierung der Chromtoxizität in Weizen (Triticum aestivum L.) durch Silizium

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Chromium (Cr) is a toxic metal usually found in soil and water, causing environmental pollution. Silicon (Si), however, has excelled in alleviating the stress caused by toxic elements in plants, and its beneficial role was mainly based on external and internal plant mechanisms. This study investigates whether and how Si influences the alleviation of Cr toxicity in wheat at the physiological and biochemical levels. The addition of Si in Cr-stressed plants significantly improved morpho-physiological characteristics, total protein, and membrane stability compared to Cr-stressed plants, suggesting that Si does have critical roles in Cr detoxification in wheat. Furthermore, Si supplementation in Cr-stressed plants showed a significant increase of Cr in roots but not in shoots compared with the plants grown under Cr stress. The addition of Si in Cr stress the raised the total chlorophyll (a and b) compared to non-treated controls. Beside this, abiotic stress indicators, such as cell death, electrolyte leakage and total soluble protein remarkably improved subjected to Si under Cr stress. These improvements are in accordance with the significant decrease of Cr in both root and shoot due to Si under Cr stress. Furthermore, Si application enhanced non-enzymatic scavenging and proline concentration to reduce Cr-induced oxidative damage in wheat. These findings reveal the role of Si on Cr detoxification in wheat and can be further implemented as a fertilization strategy.

Zusammenfassung

Chrom (Cr) ist ein giftiges Metall, das im Boden und Wasser vorkommt und die Umwelt verschmutzt. Silizium (Si) hat sich allerdings bei der Reduzierung des durch toxische Elemente verursachten Stresses in Pflanzen bewährt, und seine vorteilhafte Rolle beruhte hauptsächlich auf externen und internen Pflanzenmechanismen. In dieser Studie wird untersucht, ob und wie Si die Linderung der Cr-Toxizität in Weizen auf physiologischer und biochemischer Ebene beeinflusst. Die Zugabe von Si in Cr-gestressten Pflanzen verbesserte die morpho-physiologischen Eigenschaften, den Gesamtproteingehalt und die Membranstabilität im Vergleich zu Cr-gestressten Pflanzen signifikant, was darauf hindeutet, dass Si bei der Cr-Entgiftung von Weizen eine entscheidende Rolle spielt. Darüber hinaus zeigte die Si-Zugabe bei Cr-gestressten Pflanzen im Vergleich zu den unter Cr-Stress gezüchteten Pflanzen einen signifikanten Anstieg von Cr in Wurzeln, aber nicht in Trieben. Die Zugabe von Si bei Cr-Stress erhöhte das Gesamtchlorophyll (a und b) im Vergleich zu unbehandelten Kontrollen. Darüber hinaus verbesserten sich die abiotischen Stressindikatoren, wie Zelltod, Elektrolytverlust und die gesamten löslichen Proteine, unter der Einwirkung von Si unter Cr-Stress bemerkenswert. Diese Verbesserungen stehen im Einklang mit der signifikanten Abnahme von Cr sowohl in der Wurzel als auch im Spross aufgrund von Si unter Cr-Belastung. Darüber hinaus erhöhte die Si-Anwendung das nicht-enzymatische Scavenging und die Prolinkonzentration, um den Cr-induzierten oxidativen Schaden in Weizen zu reduzieren. Diese Ergebnisse verdeutlichen die Rolle von Si bei der Entgiftung von Cr in Weizen und können in Düngungsstrategien weiter umgesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 7:869–881

    Article  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Pavez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  Google Scholar 

  • Datta JK, Bandhyopadhyay A, Banerjee A, Mondal NK (2011) Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J Agric Technol 7:395–402

    Google Scholar 

  • Davies F, Puryear T, Newton R, Egilla J, Grossi J (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J Plant Nutr 25:2389–2407

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Xia J, Mao L, Wan Y, Zhou P (2010) Plant diversity reduce the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Front Environ Sci Eng 6:213–223

    Article  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (2008) Influence of silicon on cadmium in wheat. In: Laing M (ed) 4th International Conference on Silicon in Agriculture. Aim Print Durban, Wild Coast Sun, South Africa, p 25

    Google Scholar 

  • Greger M, Kabir AH, Maity PJ, Landberg T, Lindberg S (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Poll 211:90–97

    Article  CAS  Google Scholar 

  • Guy C, Haskell D, Neven L, Klein P, Smelser C (1992) Hydration-state-responsive proteins link cold and drought stress in spinach. Planta 188:265–270

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. Cali Agric Exp Stat, vol 347. University of California, Berkeley, p 32

    Google Scholar 

  • Kabir AH, Hossain MM, Khatun MA, Mandal A, Haider SA (2016) Role of silicon counteracting cadmium toxicity in Alfalfa (Medicago sativa L.). Front Plant Sci 7:1117

    PubMed  PubMed Central  Google Scholar 

  • Koleli N, Eker S, Cakmak I (2004) Effect of zinc supply on cadmium toxicity in durum and bread wheat grown in zinc deficient soil. Environ Pollut 131:453–459

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1985) Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans 11:591–592

    Article  Google Scholar 

  • Lindberg S, Landberg T, Greger M (2007) Cadmium uptake and induction of phytochelatins in wheat protoplasts. Plant Physiol Biochem 45:47–87

    Article  CAS  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a b HLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A 99:13938–13943

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Li M (1992) Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117:23–29

    Article  CAS  Google Scholar 

  • Liu J, Duan C, Zhang X, Zhu Y, Lu X (2013) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 88:85–91

    CAS  Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez MC, Esparza-Garcia FJ, Rodriguez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163:829–834

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivar differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XX, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS 105:99319935

    Google Scholar 

  • Panda SK, Mahapatra S, Patra HK (2002) Chromium toxicity and water stress simulation effects in intact senescing leaves of greengram (Vigna radiata L.var Wilckzeck K851). In: Panda SK (ed) Advances in Stress physiology of plants, Scientific Publishers, India, pp 129–136

    Google Scholar 

  • Roberts JR (1999) Metal toxicity in children. In: Emercyulle GA (ed) Training manual on pediatric environmental health: putting it into practice. Children’s Environmental Health Network, United States

    Google Scholar 

  • Rogalla H, Romheld V (2002) Role of leaf apoplast in siliconmediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  • Schiavon M, Wirtz M, Borsa P, Quaggiotti S, Hell R, Malagoli M (2007) Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.). Plant Biol 9:662–671

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. J Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Stolt JP, Sneller T, Bryngelsson T, Lundborg H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21–28

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere. 41:1075–1082

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  • Zhao J, Fujita K, Sakai K (2005) Oxidative stress in plant cell culture: a role in production of β‑thujaplicin by Cupresssus lusitanica suspension culture. Biotechnol Bioeng 90:621–631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Humayan Kabir.

Ethics declarations

Conflict of interest

U. Sarkar, S. Tahura, U. Das, M.R. Amin Mintu and A. Humayan Kabir declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, U., Tahura, S., Das, U. et al. Mitigation of Chromium Toxicity in Wheat (Triticum aestivum L.) Through Silicon. Gesunde Pflanzen 72, 237–244 (2020). https://doi.org/10.1007/s10343-020-00506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00506-6

Keywords

Schlüsselwörter

Navigation