Skip to main content
Log in

Litter removal increases the plant carbon input to soil in a Pinus massoniana plantation

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Plants are the main sources of soil organic carbon in forest ecosystems. Photosynthetic C assimilated by plants enters the soil through litter, root litter, and root exudates. However, it remains unclear how litter changes affect the plant-C input. We aimed to quantify the responses of C inputs via the litter, root litter, and root exudates to litter alteration. We conducted a 2 years litter manipulation (litter removal, litter addition, and control) experiment in a Pinus massoniana plantation and studied its impacts on plant-C inputs via litter, fine root litter, and root exudates. The results show that litter removal significantly increases the litterfall in summer and autumn and reduces root-C exudation rates in spring but has no effect on the C input by fine roots. The annual C inputs by litter, fine roots, and root exudates in the control plots were 348.28, 42.39, and 17.44 g C m−2, respectively, accounting for 85.34%, 10.39%, and 4.27% of the total C input, respectively. Litter removal increases the plant annual total C input by 24.55% due to the decrease in the root exudate-C input by 30.50% and increase in the litter-C input by 31.12%. In contrast, litter addition insignificantly affects the C input through litter, fine roots, or root exudates. Increasing the litter-C input and decreasing the root exudate-C input by litter removal are a plant strategy based on which forest growth can be maximized in the short term. The increased plant-C input due to litter removal mitigates the effects of litter alteration. This study is of great significance for understanding plant growth strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CT:

Control

LA:

Litter addition

LR:

Litter removal

SOM:

Soil organic matter

MBC:

Microbial biomass carbon

MBN:

Microbial biomass nitrogen

References

  • Ataka M, Sun L, Nakaji T, Katayama A, Hiura T (2020) Five-year nitrogen addition affects fine root exudation and its correlation with root respiration in a dominant species, Quercus crispula, of a cool temperate forest, Japan. Tree Physiol 40:367–376

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2(8):1843–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair BC, Perfecto I (2001) Nutrient content and substrate effect on fine root density and size distribution in a Nicaraguan rain forest. Biotropica 33:697–701

    Article  Google Scholar 

  • Chen L, Fang K, Wei B, Qin S, Feng X, Hu T, Ji C, Yang Y (2021) Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecol Lett 24:1018–1028

    Article  PubMed  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19(4):988–995

    Article  Google Scholar 

  • Degryse F, Verma VK, Smolders E (2008) Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant Soil 306:69–84

    Article  CAS  Google Scholar 

  • Du E, Fenn ME, Vries WD, Ok YS (2019) Atmospheric nitrogen deposition to global forests: status, impacts and management options. Environ Pollut 250:1044–1048

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Gill AL, Finzi AC, Penuelas J (2016) Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol Lett 19(12):1419–1428

    Article  PubMed  Google Scholar 

  • Haichar FEZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hu YL, Zeng DH, Ma XQ (2016) Chang SX (2016) Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland. For Ecol Manag 362:38–45

    Article  Google Scholar 

  • Huang W, Spohn M (2015) Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biol Biochem 83:12–18

    Article  CAS  Google Scholar 

  • Huang L, He B, Chen A, Wang H, Liu J, Lű A, Chen Z (2016) Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci Rep 6:24639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Liu W, Yang S, Yang L, Peng Z, Deng M, Shan Xu, Zhang B, Ahirwal J, Liu L (2021) Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biol Biochem 160:108322

    Article  CAS  Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol S 48:419–445

    Article  Google Scholar 

  • Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28(1):25–31

    Article  CAS  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Bol R (2006) Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biol Biochem 38(4):747–758

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil: review. J Plant Nutr Soil Sc 163:421–431

    Article  CAS  Google Scholar 

  • Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Grandy AS, Cleveland CC (2012) Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob Change Biol 18(9):2969–2979

    Article  Google Scholar 

  • Li G, Han H, Du Y, Hui D, Xia J, Niu S, Li X, Wan S (2017) Effects of warming and increased precipitation on net ecosystem productivity: a long-term manipulative experiment in a semiarid grassland. Agr Forest Meteorol 232(15):359–366

    Article  Google Scholar 

  • Lima TTS, Miranda IS, Vasconcelos SS, Vasconcelos SS (2010) Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth. Brazil New Phytol 187(3):622–630

    Article  PubMed  Google Scholar 

  • Liu X, Lin TC, Vadeboncoeur MA, Yang Z, Yang Y (2019) Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest. Plant Soil 444(1/2):489–499

    Article  CAS  Google Scholar 

  • Ma Z, Gao S, Yang W, Wu F (2015) Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest. Chin J Ecol 34(01):122–129

    Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302(5649):1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Mei L (2006) Fine root turnover and carbon allocation in Manchurian Ash and Davurian Larch plantations. Dissertation, Northeast Forestry University

  • Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants : mechanisms and controls. Agronomie 23(5–6):375–396

    Article  CAS  Google Scholar 

  • Nobili MD, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Article  Google Scholar 

  • Ostertag R, Scatena FN, Silver WL (2003) Forest floor decomposition following hurricane litter inputs in several Puerto Rican forests. Ecosystems 6:261–273

    Article  CAS  Google Scholar 

  • Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22:990–999

    Article  Google Scholar 

  • Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29(12):1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S (2019) Water scaling of ecosystem carbon cycle feedback to climate warming. Sci Adv 5(8):eaav131

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rocha JHT, Gonçalves JLM, Gava JL, Godinho TO, Melo EASC, Bazani JH, Hubner A (2016a) Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations. Forest Ecol Manag 379:1–10

    Article  Google Scholar 

  • Rocha JHT, Marques ERG, Gonçalves JLM, Hübner A, Brandani B, Ferraz AV, Moreir RM (2016b) Decomposition rates of forest residues and soil fertility after clear-cutting of Eucalyptus grandis stands in response to site management and fertilizer application. Soil Use Manag 32(3):289–302

    Article  Google Scholar 

  • Rodtassana C, Tanner EVJ (2018) Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects. Ecology 99(3):735–742

    Article  CAS  PubMed  Google Scholar 

  • Rubino M, Dungait JAJ, Evershed RP, Bertolini T, Angelis PD, D’Onofrio A, Lagomarsino A, Lubritto C, Merola A, Terrasi F, Cotrufo MF (2010) Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a 13C labelled-leaf litter experiment. Soil Biol Biochem 42(7):1009–1016

    Article  CAS  Google Scholar 

  • Santos F, Nadelhoffer K, Bird JA (2016) Rapid fine root C and N mineralization in a northern temperate forest soil. Biogeochemistry 128:187–200

    Article  CAS  Google Scholar 

  • Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81(1):1–31

    Article  PubMed  Google Scholar 

  • Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98(5):1052–1062

    Article  Google Scholar 

  • Sayer EJ, Tanner EVJ, Cheesman AW (2006) Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13

    Article  CAS  Google Scholar 

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Chang 1:304–307

    Article  CAS  Google Scholar 

  • Sayer EJ, Wright SJ, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN (2012) Turner BL (2012) Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15(3):387–400

    Article  CAS  Google Scholar 

  • Sayer EJ, Baxendale C, Birkett AJ, Bréchet LM, Castro B, Kerdraon-Byrne D, Lopez-Sangil L, Rodtassana C (2020a) Altered litter inputs modify carbon and nitrogen storage in soil organic matter in a lowland tropical forest. Biogeochemistry 156(1):1–16

    Google Scholar 

  • Sayer EJ, Rodtassana C, Sheldrake M, Bréchet LM, Ashford O, Lopez-Sangil L, Kerdraon-Byrne D, Castro B, Turner BL, Wright SJ, Tanner EVJ (2020b) Revisiting nutrient cycling by litterfall: insights from 15 years of litter manipulation in old-growth lowland tropical forest. Adv Ecol Res 62:173–223

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Silver WL, Thompson AW, Mcgroddy ME, Varner RK, Dias JD, Silva H, Crill PM, Keller M (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Glob Change Biol 11:290–306

    Article  Google Scholar 

  • Silver WL, Hall SJ, González G (2014) Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. Forest Ecol Manag 332:47–55

    Article  Google Scholar 

  • Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53

    Article  CAS  Google Scholar 

  • Song J, Wan S, Piao S et al (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3:1309–1320

    Article  PubMed  Google Scholar 

  • Spain AV (1984) Litterfall and the standing crop of litter in three tropical Australian rainforests. J Ecol 72(3):947–961

    Article  Google Scholar 

  • Tanner EVJ, Sheldrake MWA, Turner BL (2016) Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest. Biogeosciences 13:6183–6190

    Article  CAS  Google Scholar 

  • Tian DL, Peng YY, Yan WD, Fang X, Kang WX, Wang GJ, Chen XY (2010) Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations. Pedosphere 20(4):486–493

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Araujo MM, Rangel-Vasconcelost LGT, Carvalho CJR, Staudhammer CL, Oliveir FA (2008) Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. J Trop Ecol 24:27–38

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Wang R, Cheng R, Xiao W, Feng X, Ze L, Ge X, Wang X, Zhang W (2012) Fine root production and turnover in Pinus massoniana plantation in three gorges reservoir area of China. J Appl Ecol 23(9):2346–2352

    Google Scholar 

  • Wang R, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021) Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. J Ecol 109:3699–3709

    Article  CAS  Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90(1):109–121

    Article  PubMed  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92(8):1616–1625

    Article  PubMed  Google Scholar 

  • Wurzburger N, Wright SJ (2015) Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96(8):2137–2146

    Article  PubMed  Google Scholar 

  • Xu S, Sayer EJ, Eisenhauer N, Lu X, Wang J, Liu C (2021) Aboveground litter inputs determine carbon storage across soil profiles: a meta-analysis. Plant Soil 462:429–444

    Article  CAS  Google Scholar 

  • Yin H, Li Y, Xiao J, Xu Z, Cheng X, Liu Q (2013) Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob Change Biol 19(7):2158–2167

    Article  Google Scholar 

  • Yuan Y, Zhao W, Zhang Z, Xiao J, Li D, Liu Q, Yin H (2018) Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots. Soil Biol Biochem 121:16–23

    Article  CAS  Google Scholar 

  • Zhang X, Wu K (2001) Fine-root production and turnover for forest ecosystems. Sci Silvae Sin 37(3):126–138

    Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 32060339) and Guizhou Forestry Scientific Research Project (J[2018]06).

Author information

Authors and Affiliations

Authors

Contributions

QZ and TH conceived the ideas and designed methodology. YC and XL carried out the laboratory analyses and conducted the fieldwork. TZ collected the data. CZ contributed to the analysis and interpretation of data and wrote the main manuscript text. JL helped in formal analysis, visualization, and writing—review. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Qingxia Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Agustin Merino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Cai, Y., Zhang, T. et al. Litter removal increases the plant carbon input to soil in a Pinus massoniana plantation. Eur J Forest Res 141, 833–843 (2022). https://doi.org/10.1007/s10342-022-01476-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01476-2

Keywords

Navigation