Skip to main content

Advertisement

Log in

Age-related growth responses of birch to warming along an elevational gradient on Changbai Mountain

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Accelerated tree growth in the alpine treeline ecotone (ATE) has been linked to the recent rapid climate warming. However, the role of tree age and elevation in the growth response of trees to climate change remains unclear. Here, we developed basal area increment chronologies of Betula ermanii from the closed forest belt (CFB) at lower elevation to the ATE of Changbai Mountain with three tree age classes (young: 0–60 years, middle-aged: 60–120 years, and old: > 120 years). In ATE, all age classes of B. ermanii have been experiencing dramatic growth acceleration since 1981. Young trees, with higher temperature sensitivity, exhibited the most prominent warming-induced growth enhancement relative to middle and old-aged trees. In CFB, young and middle-aged trees exhibited similar sensitivity to the temperature increase during the warm period relative to the cold period, with strikingly accelerated growth enhancement trends. In contrast, old trees did not show any significant growth trend. Moreover, young trees in ATE showed significantly (p < 0.01) higher growth rates than those in CFB, whereas middle-aged trees in ATE showed significantly (p < 0.05) lower growth rates than those in CFB. Our results reveal that the response of tree growth to climate change varies with tree age and elevation. Therefore, these factors should be considered to avoid overestimation or underestimation of tree growth trends and bias in estimating potential forest production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argyres AZ, Schmitt J (1992) Neighbor relatedness and competitive performance in Impatiens capensis (Balsaminaceae): a test of the resource partitioning hypothesis. Am J Bot 79(2):181–185

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T (2013) Site-and species-specific responses of forest growth to climate across the E uropean continent. Global Ecol Biogeogr 22(6):706–717

    Article  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees-Struct Funct 24(1):43–52

    Article  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Biondi F, Qeadan F (2008) A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res 64(2):81–96

    Article  Google Scholar 

  • Bond BJ (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci 5(8):349–353

    Article  CAS  PubMed  Google Scholar 

  • Camarero JJ, Gazol A, Galvan JD, Sanguesabarreda G, Gutierrez E (2015) Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Global Change Biol 21(2):738–749

    Article  Google Scholar 

  • Cao J, Zhao B, Gao L, Li J, Li Z, Zhao X (2018) Increasing temperature sensitivity caused by climate warming, evidence from Northeastern China. Dendrochronologia 51:101–111

    Article  Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740

    Article  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170(4):861–872

    Article  PubMed  Google Scholar 

  • Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans ME (2016) Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 19(9):1119–1128

    Article  PubMed  Google Scholar 

  • Dai L, Jia J, Yu D, Lewis BJ, Zhou L, Zhou W, Zhao W, Jiang L (2013) Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. For Ecol Manag 300:106–116

    Article  Google Scholar 

  • Dang H, Jiang M, Zhang Q, Zhang Y (2007) Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. For Ecol Manag 240(1–3):143–150

    Article  Google Scholar 

  • D'Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming‐induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem. Cycles, 18(3)

  • Du H, Liu J, Li MH, Büntgen U, Yang Y, Wang L, Wu Z, He HS (2018) Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biol 24(3):1256–1266

    Article  Google Scholar 

  • Du H, Li MH, Christian R, Zong S, Michael S, Huang L (2021) Sensitivity of recruitment and growth of alpine treeline birch to elevated temperature. Agric For Meteorol 304:108403

    Article  Google Scholar 

  • Duchesne L, Ouimet R, Morneau C (2003) Assessment of sugar maple health based on basal area growth pattern. Can J for Res 33(11):2074–2080

    Article  Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank D (2008) Climate signal age effects—evidence from young and old trees in the Swiss Engadin. For Ecol Manag 255(11):3783–3789

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London, pp 11–14

    Google Scholar 

  • Gaire NP, Fan Z-X, Bräuning A, Panthi S, Rana P, Shrestha A, Bhuju DR (2020) Abies spectabilis shows stable growth relations to temperature, but changing response to moisture conditions along an elevation gradient in the central Himalaya. Dendrochronologia 60:125675

    Article  Google Scholar 

  • Gao L, Gou X, Deng Y, Wang Z, Gu F, Wang F (2018a) Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agric For Meteorol 260:9–16

    Article  Google Scholar 

  • Gao L, Zhang Y, Wang X, Zhang C, Zhao Y, Liu L (2018b) Sensitivity of three dominant tree species from the upper boundary of their forest type to climate change at Changbai Mountain Northeastern China. Tree-Ring Res 74(1):39–49

    Article  Google Scholar 

  • Gea-Izquierdo G, Fonti P, Cherubini P, Martín-Benito D, Chaar H, Cañellas I (2012) Xylem hydraulic adjustment and growth response of Quercus canariensis Willd to climatic variability. Tree Physiol 32(4):401–413

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Global Change Biol 17(7):2400–2414

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biol 15(8):1930–1948

    Article  Google Scholar 

  • Gou X, Chen F, Yang M, Li J, Peng J, Jin L (2005) Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. J Arid Environ 61(4):513–524

    Article  Google Scholar 

  • Gou X, Chen F, Yang M, Gordon J, Fang K, Tian Q, Zhang Y (2008) Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: evidence from tree rings. Sci China Ser D Earth Sci 51(1):41–55

    Article  Google Scholar 

  • Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Climate Res 60(2):119–132

    Article  Google Scholar 

  • Hellmann L, Agafonov L, Ljungqvist FC, Churakova O, Düthorn E, Esper J, Hülsmann L, Kirdyanov AV, Moiseev P, Myglan VS (2016) Diverse growth trends and climate responses across Eurasia’s boreal forest. Environ Res Lett 11(7):074021

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bull

  • Jiao L, Jiang Y, Wang M, Zhang W, Zhang Y (2017) Age-Effect Radial Growth Responses of Picea schrenkiana to Climate Change in the Eastern Tianshan Mountains, Northwest China. Forests 8(9):294

    Article  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biol 12(11):2163–2174

    Article  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ 30(9):1176–1190

    Article  CAS  Google Scholar 

  • Kharuk VI, Im ST, Dvinskaya ML, Ranson KJ, Petrov IA (2017) Tree wave migration across an elevation gradient in the Altai Mountains, Siberia. J Mountain Sci 14(3):442–452

    Article  Google Scholar 

  • King GM, Gugerli F, Fonti P, Frank DC (2013) Tree growth response along an elevational gradient: climate or genetics? Oecologia 173(4):1587–1600

    Article  PubMed  Google Scholar 

  • Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95(1):41–52

    Article  Google Scholar 

  • Lenth R, Lenth MR (2018) Package ‘lsmeans.’ Am Stat 34(4):216–221

    Google Scholar 

  • Li X, Liang E, Gričar J, Prislan P, Rossi S, Čufar K (2013) Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol 33(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Liang E, Shao X, Xu Y (2009) Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor Appl Climatol 98(1):9–18

    Article  Google Scholar 

  • Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2):363–373

    Article  Google Scholar 

  • Linderholm HW, Linderholm K (2004) Age-dependent climate sensitivity of Pinus sylvestris L. in the central Scandinavian Mountains. Boreal Environ Res 9(4):307–317

    Google Scholar 

  • Madrigal-González J, Zavala MA (2014) Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem. Agric for Meteorol 192:18–26

    Article  Google Scholar 

  • Madrigal-González J, Andivia E, Zavala MA, Stoffel M, Calatayud J, Sánchez-Salguero R, Ballesteros-Cánovas J (2018) Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Sci Total Environ 642:619–628

    Article  PubMed  Google Scholar 

  • Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manag 171(3):243–259

    Article  Google Scholar 

  • Martínez-Vilalta J, Vanderklein D, Mencuccini M (2007) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150(4):529–544

    Article  PubMed  Google Scholar 

  • Mcdowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5(7):669–672

    Article  Google Scholar 

  • Mcdowell NG, Allen CD, Marshall L (2010) Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biol 16(1):399–415

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397(6721):659–659

    Article  CAS  Google Scholar 

  • Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manag 80:57–80

    Article  Google Scholar 

  • Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30(2):225–233

    Article  PubMed  Google Scholar 

  • Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang G (2013) Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501(7465):88–92

    Article  CAS  PubMed  Google Scholar 

  • Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detecting long-term growth trends using tree rings: a critical evaluation of methods. Global Change Biol 21(5):2040–2054

    Article  Google Scholar 

  • Phipps R, Whiton J (1988) Decline in long-term growth trends of white oak. Canadian J For Res 18:24–32

    Article  Google Scholar 

  • Qi Z, Liu H, Wu X, Hao Q (2015) Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biol 21(2):816–826

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177(1):199–208

    Article  PubMed  Google Scholar 

  • Rossi S, Morin H, Deslauriers A, Plourde PY (2011) Predicting xylem phenology in black spruce under climate warming. Global Change Biol 17(1):614–625

    Article  Google Scholar 

  • Ruiz-Benito P, Madrigal-González J, Young S, Mercatoris P, Cavin L, Huang TJ, Chen JC, Jump AS (2015) Climatic stress during stand development alters the sign and magnitude of age-related growth responses in a subtropical mountain pine. PLoS One 10(5):e0126581

    Article  PubMed  PubMed Central  Google Scholar 

  • Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc Natl Acad Sci 106(48):20348–20353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzer MW, Larson ER, Bunn AG, Hughes MK (2014) Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ Res Lett 9(11):114007

    Article  Google Scholar 

  • Sanchez-Salguero R, Camarero JJ, Gutiérrez E, Gazol A, Sangüesa-Barreda G, Moiseev P, Linares JC (2018) Climate warming alters age-dependent growth sensitivity to temperature in eurasian alpine treelines. Forests 9(11):688

    Article  Google Scholar 

  • Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399

    Article  CAS  PubMed  Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Hengeveld G, Reyer C, Hanewinkel M, Zimmermann NE, Cullmann D (2015) Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg Environ Chang 15(8):1581–1594

    Article  Google Scholar 

  • Shi C, Schneider L, Hu Y, Shen M, Sun C, Xia J, Forbes BC, Shi P, Zhang Y, Ciais P (2020) Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau. Environ Res Lett 15(5):054011

    Article  Google Scholar 

  • Suarez F, Binkley D, Kaye MW, Stottlemyer R (1999) Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience 6(3):465–470

    Article  Google Scholar 

  • Sun J, Liu Y (2015) Age-independent climate-growth response of Chinese pine (Pinus tabulaeformis Carrière) in North China. Trees 29(2):397–406

    Article  Google Scholar 

  • Szeicz JM, MacDonald GM (1994) Age-dependent tree-ring growth responses of subarctic white spruce to climate. Can J for Res 24(1):120–132

    Article  Google Scholar 

  • Takahashi K, Tokumitsu Y, Yasue K (2005) Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecol Res 20(4):445–451

    Article  Google Scholar 

  • Tappeiner JC, Huffman D, Marshall D, Spies TA, Bailey JD (1997) Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon. Can J for Res 27(5):638–648

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23(2):257–265

    Article  Google Scholar 

  • Voelker SL (2011) Age-dependent changes in environmental influences on tree growth and their implications for forest responses to climate change, Size-and age-related changes in tree structure and function. Springer, Berlin, pp 455–479

    Google Scholar 

  • Wang X, Zhao X, Gao L (2013) Climatic response of Betula ermanii along an altitudinal gradient in the northern slope of Changbai Mountain, China. Dendrobiology 70:99

    Article  Google Scholar 

  • Wang W, Jia M, Wang G, Zhu W, Mcdowell NG (2017) Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. For Ecol Manag 402:135–144

    Article  Google Scholar 

  • Wang B, Yu P, Zhang L, Wang Y, Yu Y, Wang S (2019) Differential trends of qinghai spruce growth with elevation in Northwestern China during the Recent Warming Hiatus. Forests 10(9):712

    Article  Google Scholar 

  • Wang XL, Feng Y (2013) RHtestsV4 User Manual. Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada. 29 pp

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30(6):669–688

    Article  PubMed  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissinomayer HD (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3(3):292–297

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HS (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10(10):1724–1736

    Article  Google Scholar 

  • Yan X, Li Q, Deng Y, Gao L, Gou X (2021) Warming-induced radial growth reduction in Betula albosinensis, eastern Qilian Mountains, China. Ecol Indic 120:106956

    Article  Google Scholar 

  • Yu D, Wang GG, Dai L, Wang Q (2007) Dendroclimatic analysis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain Northeast China. For Ecol Manag 240(1–3):105–113

    Article  Google Scholar 

  • Yu G, Liu Y, Wang X, Ma K (2008) Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees-Struct Funct 22(2):197–204

    Article  Google Scholar 

  • Yu D, Wang Q, Liu J, Zhou W, Qi L, Wang X, Zhou L, Dai L (2014) Formation mechanisms of the alpine Erman’s birch (Betula ermanii) treeline on Changbai Mountain in Northeast China. Trees 28(3):935–947

    Article  CAS  Google Scholar 

  • Zeng Q, Rossi S, Yang B (2018) Effects of age and size on xylem phenology in two conifers of northwestern China. Front Plant Sci 8:2264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Huang J-G, Liang H, Rossi S, Bergeron Y, Shishov VV, Jiang S, Kang J, Zhu H, Dong Z (2021) Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains China. Agric For Meteorol 304:108392

    Article  Google Scholar 

  • Zhu L, Liu S, Arzac A, Cooper DJ, Jin Y, Yuan D, Zhu Y, Zhang X, Li Z, Zhang Y (2021) Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas. Agric For Meteorol 307:108523

    Article  Google Scholar 

Download references

Acknowledgements

We thank Siqi Li for participating in the field sampling and sample pretreatment.

Funding

This research was funded by the National Key R&D Program of China (2019YFC0409101), the Joint Fund of National Natural Science Foundation of China (Grant Number U19A2023), the Science and Technology Development Plan of Jilin Province (Grant Number 20190201291JC), and the Fundamental Research Funds for the Central Universities (2412020FZ002, 2412020XK002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Du or Zhengfang Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Miren del Rio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5505 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Fang, K., Du, H. et al. Age-related growth responses of birch to warming along an elevational gradient on Changbai Mountain. Eur J Forest Res 141, 293–305 (2022). https://doi.org/10.1007/s10342-021-01438-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-021-01438-0

Keywords

Navigation