Skip to main content
Log in

Wood density as an auxiliary classification criterion for botanical identification of 241 tree species in the order Sapindales

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In plant taxonomy, wood density is not usually used as a classification criterion, although it could be used as a complementary measure. The aim of the present study was therefore to verify whether the xylem tissues of species belonging to the same taxon (genus or family) are similar in terms of density. In order to test this hypothesis, we examined previously reported wood basic density values for 241 tree species growing in Latin American forests and belonging to 64 genera in the families Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, Sapindaceae and Simaroubaceae (order Sapindales). An estimated 57% of the species analyzed had light or very light wood (basic density < 0.65 g/cm3), although the density of the whole sample varied widely between species, from 0.24 g/cm3 for Bursera instabilis to 1.23 g/cm3 for Schinopsis brasiliensis. The lightest woods generally corresponded to species in the family Simaroubaceae and the heaviest ones to species in the family Rutaceae. The interspecific variability in basic density decreased significantly as the number of species examined in the taxon increased. Thus, species in Simaroubaceae family, the least represented in the whole sample, yielded the greatest variation in basic density between species. The findings verified that, as a single criterion, basic density is insufficient to distinguish all families and genera considered in the study, as the density did not differ significantly between Burseraceae and Meliaceae or between Sapindaceae and Rutaceae. In addition, within each family the basic density only differed significantly between four of the genera: Protium (Burseraceae), Trattinickia (Burseraceae), Zanthoxylum (Rutaceae) and Cupania (Sapindaceae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ABNT (2003) NBR 11941: madeira, determinaçao da densidade básica. Associaçao Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  • Álvarez E, Benítez D, Velásquez C, Cogollo A (2013) Densidad básica del fuste del bosque seco en la costa caribe de Colombia. Revista Intertropica 8:17–28

    Google Scholar 

  • Arévalo Fuentes RL, Londoño Arango A (2005) Manual para la identificación de maderas que se comercializan en el Departamento del Tolima. Universidad del Tolima, Ibagué

    Google Scholar 

  • Asseflor Consultoria Agroflorestal (2018) Tabela de pesos de algumas madeiras da Amazonia. http://asseflorestal.blogspot.com.br/2012/01/tabela-de-pesos-de-alugumas-madeiras-da.html. Accessed 25 May 2018

  • Atencia ME (2003) Densidad de maderas (kg/m3) ordenadas por nombre común. INTI/CITEMA, Buenos Aires

    Google Scholar 

  • Baeta I da C, Santos V (1999) Resistência dos materiais e dimensionamento de estruturas para construções rurais. Universidade Federal de Viçosa, Department Engenharia Agrícola, Viçosa

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forest: a primer. FAO Forestry Paper 134. FAO, Rome

  • Carpio MIM (2003) Maderas de Costa Rica: 150 especies forestales, 2nd edn. Editorial Universidad de Costa Rica, San José de Costa Rica

    Google Scholar 

  • Carvalho G (2004) Tabela de peso específico de algumas madeiras da Amazonia. AIMEX, Belém

    Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege HT, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16(6):2356–2367

    Article  Google Scholar 

  • Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum (Global Wood Density Database). Ecol Lett 12(4):351–366

    Article  Google Scholar 

  • Chipaia F, Urbinati C, Dos Santos P, Reis A (2017) Identification of diagnostic anatomical features in ten species of Sapindales occurring in the Brazilian Amazon. In: 28th international conference on wood science and technology 2017. Implementation of wood science in wood working sector. European Forest Institute, Zagreb

  • Cronquist A (1988) The evolution and classification of flowering plants. New York Botanical Garden, Bronx

    Google Scholar 

  • Desch HE, Dinwoodie JM (1996) Timber: structure, properties, conversion and use. MacMillan Press Ltd, Hong-Kong

    Book  Google Scholar 

  • FAO (2008) Evaluación de los recursos forestales nacionales 2010. Directrices para la elaboración de informes nacionales destinados a FRA 2010. Organización de las Naciones Unidas para la Alimentación y la Agricultura, Departamento de Bosques, Rome

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manage 90(1):59–87

    Article  Google Scholar 

  • Forest Products Laboratory (2010) Wood handbook. Wood as an engineering material. USDA For. Serv. Gen. Tech. Rep. FPL-GTR-113, Madison

  • Gama RL (2018) Floral structure of Guarea macrophylla Vahl and Trichilia claussenii C.DC. (Meliaceae): funcional aspects and implications in the systematics and evolution of Sapindales. Master´s Dissertation. Instituto de Biociências, University of São Paulo, São Paulo

  • Ibanez T, Chave J, Barrabé L, Elodie B, Boutreux T, Trueba S, Vandrot H, Birnbaum P (2017) Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J Veg Sci 28:19–33

    Article  Google Scholar 

  • JUNAC (1981) Tablas de propiedades físicas y mecánicas de la madera de 24 especies de Colombia. Junta del Acuerdo de Cartagena, Lima

    Google Scholar 

  • Kraft NJB, Metz MR, Condit RS, Chave J (2010) The relationship between wood density and mortality in a global tropical forest data set. New Phytol. https://doi.org/10.1111/j.1469-8137.2010.03444.x

    Article  PubMed  Google Scholar 

  • Li S, Lens F, Espino S, Karimi Z, Klepsch M, Jochen Schenk H, Schmitt M, Schuldt B, Jansen S (2016) Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J 37:152–171

    Article  Google Scholar 

  • Luz CL da S (2017) Phylogeny and systematics of Schinus L. (Anacardiaceae), with revision of a clade endemic to the Andean cloud forests. Doctoral Thesis. Instituto de Biociências, University of São Paulo, São Paulo

  • MAE-FAO (2014) Propiedades anatómicas, físicas y mecánicas de 93 especies forestales. Ministerio del Ambiente del Ecuador, Organización de las Naciones Unidas para la Alimentación y la Agricultura, Quito

  • Martínez-Cabrera HI, Jones CS, Espino S, Jochen Schenk J (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot 96:1388–1398

    Article  Google Scholar 

  • Mettem CJ, Richens AD (1991) Hardwoods in construction. Timber Research & Development Association, High Wycombe

    Google Scholar 

  • Missouri Botanical Garden (2018) Tropicos.org. http://www.tropicos.org. Accessed 7 Sept 2018

  • Mitchell JD, Douglas DC (2015) A revision of Spondias L. (Anacardiaceae) in the Neotropics. Phytokeys 55:1–92

    Article  Google Scholar 

  • Ogle K, Pathikonda S, Sartor K, Lichstein JW, Osnas JLD, Pacala SW (2014) A model-based meta-analysis for estimating species-specific wood density and identifying potential sources of variation. J Ecol 102:194–208. https://doi.org/10.1111/1365-2745.12178

    Article  Google Scholar 

  • OIMT (2018) Lesser used species. Organización Internacional de Maderas Tropicales. http://www.tropicaltimber.info/es/. Accessed 16 July 2018

  • Peraza Oramas C, González Álvarez MA (1973) Tecnología de la madera. Volumen I. La producción maderera y su importancia económica. AITIM, Madrid

    Google Scholar 

  • Quintana S, Cabudivo A, Espíritu JM, Cabudivo JM (2011) Propiedades físico-mecánicas de las maderas de Simarouba amara (Aubl) y Cedrelinga catenaeformis (Ducke) de plantaciones de diferentes edades, San Juan Bautista, Loreto, Perú. Conoc Amaz 2(2):115–123

    Google Scholar 

  • Quirino WF, Vale AT, Andrade APA, Abreu VLS, Azevedo MCS (2004) Poder calorífico da madeira e de resíduos lignocelulósicos. Biomassa e Energia 1(2):173–182

    Google Scholar 

  • Riesco Muñoz G, Imaña Encinas J, Paula JE (2019) Densidad de la madera de 59 especies del orden Sapindales procedentes de bosques naturales brasileños. Madera y Bosques 25(2) (in press)

  • Rodríguez Rojas M (1996) Manual de identificación de especies forestales de la subregión andina. Instituto Nacional de Investigación Agraria-Perú, Organización Internacional de las Maderas Tropicales, Lima

  • Sambamurty AVSS (2010) Taxonomy of angiosperms. I.K. International Pvt. Ltd., New Delhi

    Google Scholar 

  • Savi T, Love VL, Dal Borgo A, Martellos S, Nardini A (2017) Morpho-anatomical and physiological traits in saplings of drought-tolerant Mediterranean woody species. Trees 31:1137–1148

    Article  Google Scholar 

  • SFB (2014) Madeiras tropicales brasileiras, v.2. Serviço Florestal Brasileiro, LPF, Brasilia

  • Spicer R (2016) Variation in angiosperm wood structure and its physiological and evolutionary significance. In: Groover A, Cronk Q (eds) Comparative and evolutionary genomics of angiosperm trees. Plant genetics and genomics: crops and models, vol 21. Springer, Cham

    Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94(3):451–459

    Article  Google Scholar 

  • WWF (2008) Maderas de Colombia. Global forest and trade network. World Wildlife Fund, Bogotá

    Google Scholar 

  • WWF (2012) Maderas de Panamá. Global forest and trade network. World Wildlife Fund, Ciudad de Panamá

    Google Scholar 

  • Zobel BJ, Buijtenen JPV (1989) Wood variation. Its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Riesco Muñoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data generated during this study are included in this published article.

Additional information

Communicated by Martina Meincken.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

José Elias de Paula: In memoriam (PhD, Prof. University of Brasilia, Botany Department, Brasilia, Brazil)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riesco Muñoz, G., Imaña Encinas, J. & Elias de Paula, J. Wood density as an auxiliary classification criterion for botanical identification of 241 tree species in the order Sapindales. Eur J Forest Res 138, 583–594 (2019). https://doi.org/10.1007/s10342-019-01190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01190-6

Keywords

Navigation