Skip to main content

Advertisement

Log in

Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Beech (Fagus sylvatica L.) forests covering relief-rich terrain often provide direct protection from rockfall for humans and their property. However, the efficacy in protecting against such hazards may abruptly and substantially change after disturbances such as fires, windthrows, avalanches and insect outbreaks. To date, there is little known about the mid-term evolution of the protective capacity in fire-injured beech stands. We selected 34 beech stands in the Southern European Alps that had burnt in different intensity fires over the last 40 years. We inventoried all living and dead trees in each stand and subsequently applied the rockfall model Rockfor.net to assess the protective capacity of fire-injured forests against falling rocks with volumes of 0.05, 0.2, and 1 m3. We tested forested slopes with mean gradients of 27°, 30°, and 35° and lengths of 75 and 150 m. Burnt beech forests hit by low-severity fires have nearly the same protective capacity as unburnt forests, because only thin fire-injured trees die while intermediate-sized and large-diameter trees mostly survive. However, the protective capacity of moderate- to high-severity burns is significantly reduced, especially between 10 and 30 years after the fire. In those cases, silvicultural or technical measures may be necessary. Besides the installation of rockfall nets or dams, small-scale felling of dying trees and the placement of stems at an oblique angle to the slope can mitigate the reduction in protection provided by the forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrosi C, Thüring M (2005) Statistical analysis of rockfall frequency—volume relationship in Ticino (Switzerland) based on historical data. Swiss Geoscience meeting, Zürich

  • ArcGIS®, version 10.0 (Esri 2010) Desktop: Release 10. (Environmental Systems Research Institute: Redlands, CA)

  • Arpa Piemonte 2015 http://www.arpa.piemonte.it/banca-dati-meteorologica. Accessed 01 February 2015

  • Ascoli D, Castagneri D, Valsecchi C, Conedera M, Bovio G (2013) Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecol Eng 54:210–217. doi:10.1016/j.ecoleng.2013.01.032

    Article  Google Scholar 

  • Ascoli D, Vacchiano G, Maringer J, Bovio G, Conedera M (2015) The synchronicity of masting and intermediate severity fire effects favors beech recruitment. Forest Ecol Manag 353:126–135. doi:10.1016/j.foreco.2015.05.031

    Article  Google Scholar 

  • Bartelt P, Bieler C, Bühler Y, Christen M, Dreier L, Gerber W, Glover J, Schneider M (2002) RAMMS (Rapid Mass Movement S). http://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf. Accessed 18 May 2016

  • Bebi P, Teich M, Schwaab J, Krumm F, Walz A, Grêt-Regamey A (2012) Entwicklung und Leistung von Schutzwäldern unter dem Einfluss des Klimawandels. Schlussbericht im Rahmen des Forschungsprogramms “Wald und Klimawandel”, Bern

  • Bebi P, Putallaz J, Frankhauser M, Schmid U, Schwitter R, Gerber W (2015) Die Schutzfunktion in Windwurfflächen. Swiss Forestry Journal 166:168–176

    Article  Google Scholar 

  • Berger F, Dorren L (2007) Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest. Schweizer Zeitschrift für Forstwesen 158:157–165

    Article  Google Scholar 

  • Bolker B, Skaug H, Magnusson A, Nielsen A (2012) Getting started with the glmmADMB package. R Core Team. http://glmmadmb.r-forge.r-project.org/glmmADMB.html. Accessed 25 Jan 2015

  • Brändli U-B, Huber M (2015) Schweizerisches Landesforstinventar LFI, Ergebnisse zur Erhebung 2004–2006. Spezialanfertigung vom 25.11.2015. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf

  • Brang P, Schönenberger W, Frehner M, Schwitter R, Thormann J, Wasser B (2006) Management of protection forests in the European Alps: an overview. For Snow Landsc Res 80:23–44

    Google Scholar 

  • Brauner M, Weinmeister W, Agner P, Vospernik S, Hoesle B (2005) Forest management decision support for evaluating forest protection effects against rockfall. Forest Ecol Manag 107:75–85. doi:10.1016/j.foreco.2004.10.018

    Article  Google Scholar 

  • Brown J (1974) Handbook for inventorying downed woody material. USDA Forest Service General Technical Report INT-16—Rocky Mountain Research Station, Utah. http://www.fs.fed.us/rm/pubs_int/int_gtr016.pdf. Accessed 1 Nov 2015

  • Brown MJ, Kertis J, Huff MH (2013) Natural tree regeneration and coarse woody debris dynamics after a forest fire in the Western Cascade Range. USDA Forest Service—Research Paper PNW-RP-592. Pacific Northwest Research Station, Portland. http://www.fs.fed.us/pnw/pubs/pnw_rp592.pdf. Accessed 1 Nov 2015

  • Camerano P, Gottero F, Terzuolo P, Varese P (2004) Tipi forestali del Piemonte. Blu Edizioni, Torino

    Google Scholar 

  • Ceschi I (2006) Il bosco nel Canton Ticino. Armando Dadó Editore, Locarno

    Google Scholar 

  • Chambers JM, Hastie TJ (1992) Statistical Models in S. Local regression models. CRC Press LLC, Boca Raton

    Google Scholar 

  • Collet C, Piboule A, Leroy O, Frochot H (2008) Advance Fagus sylvatica and Acer pseudoplatanus seedlings dominate tree regeneration in a mixed broadleaved former coppice-with-standards forest. Forestry 81:135–150. doi:10.1093/forestry/cpn004

    Article  Google Scholar 

  • Conedera M, Lucini L, Holdenrieder O (2007) Pilze als Pioniere nach Feuer. Wald und Holz 11:45–48

    Google Scholar 

  • Conedera, M., Lucini, L., Valese, E., Ascoli, D., Pezzatti, G. (Eds.) 2010 Fire resistance and vegetative recruitment ability of different deciduous tree species after low- to moderate-intensity surface fires in southern Switzerland. In: Viegas, D.X. (ed) VI International Conference on forest fire research, 15–18 Nov 2010, Coimbra, Portugal. [CD-ROM]. Portugal, ADAI/CEIF University of Coimbra

  • Conedera M, Tonini M, Oleggini L, Orozco CV, Leuenberger M, Pezzatti G (2015) Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment. Comput Environ Urban Syst 52:10–20

    Article  Google Scholar 

  • Corpo Forestale dello Stato- Ministero delle Politiche Agricole, Ailmentari e Forestali (2005). Ufficio Territoriale per la Biodiversità di Verona Centro Nationale Biodiversità Forestale di Peri

  • Deepayan S (2008) Lattice: multivariate data visualization with R. Springer, New York (USA)

    Google Scholar 

  • Development Core Team R (2014) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Dorren LKA (2016) Rockyfor3D (v5.2) revealed – Transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 33 p. Accessed 18 May 2016

  • Dorren L, Berger F (2005) Stem breakage of trees and energy dissipation during rockfall impacts. Tree Physiol 26:63–71

    Article  Google Scholar 

  • Dorren L, Berger F, Imeson AC, Maier B, Rey F (2004a) Integrity, stability and management of protection forests in the European Alps. Forest Ecol Manag 195:165–176

    Article  Google Scholar 

  • Dorren L, Maier B, Putters US, Seijmonsbergen AC (2004b) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. Geomorphology 57:151–167. doi:10.1016/S0169-555X(03)00100-4

    Article  Google Scholar 

  • Dorren L, Berger F, Hir C, Mermin E, Tardif P (2005a) Mechanisms, effects and management implications of rockfall in forests. Forest Ecol Manag 215:183–195. doi:10.1016/j.foreco.2005.05.012

    Article  Google Scholar 

  • Dorren L, Berger F, Maier B (2005b) Der Schutzwald als Steinschlagnetz. LWFaktuell 50:25–27

    Google Scholar 

  • Dorren L, Berger F, Frehner M, Huber M, Kühne K, Métral R, Sandri A, Schwitter R, Thormann J, Wasser B (2015) Die neue NaiS-Anforderungsprofil Steinschlag. Swiss Forestry Journal 166:16–23

    Article  Google Scholar 

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion, Bundesamt Umwelt Wald Landschaft, Bern

    Google Scholar 

  • Frey W, Thee P (2002) Avalanche protection of windthrow areas: a ten year comparison of cleared and uncleared starting zones. Forest Snow Landsc Res 77:89–107

    Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zürich

    Google Scholar 

  • Herold A, Ulmer U (2001) Stand stability in the Swiss National Forest Inventory: assessment technique, reproducibility and relevance. For Ecol Manag 145:29–42. doi:10.1016/S0378-1127(00)00572-7

    Article  Google Scholar 

  • Herranz J, Martinez-Sanchez J, de Las Heras J, Ferrandis P (1996) Stages of plant succession in Fagus sylvatica L. and Pinus sylvestris L. in forests of Tejera Negra Natural Park (Central Spain), three years after fire. Isr J Plant Sci 44:347–358

    Article  Google Scholar 

  • Hood SM, Smith SL, Cluck DR (2007) Delayed conifer tree mortality following fire in California. USDA Forest Service, pp 261–283. http://www.fs.fed.us/psw/publications/documents/psw_gtr203/psw_gtr203_019hood.pdf. Accessed 1 Feb 15

  • Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto S, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. doi:10.1002/joc.3794

    Article  Google Scholar 

  • Istituto per le Piante da Legno e l’Ambiente (2012) Piani Forestali Territoriali. Italy. http://www.sistemapiemonte.it/sitad/metadata_1.do?idEntita=10002910&interfaccia=sispie&authType=guest. Accessed 1 Feb 15

  • Jaboyedoff M, Labiouse V (2011) Technical note: preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819–828. doi:10.5194/nhess-11-819-2011

    Article  Google Scholar 

  • Kahl T (2008) Kohlenstofftransport aus dem Totholz in den Boden. Dissertation, University of Freiburg i.Br

  • Kajdiž P, Diaci J, Rebernik J (2015) Modelling facilitates silvicultural decision-making for improving the mitigating effect of beech (Fagus sylvatica L.) dominated alpine forest against rockfall. Forests 6:2178–2198. doi:10.3390/f6062178

    Article  Google Scholar 

  • Keller M (eds) (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Druckzentrum Schütz AG, Birmensdorf

  • Keyser TL, Lentile LB, Smith FW, Shepperd WD (2008) Changes in forest structure after a large, mixed-severity wildfire in Ponderosa Pine Forests of the Black Hills, South Dakota, USA. For Sci 54:328–338

    Google Scholar 

  • Koop H, Hilgen P (1987) Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). For Ecol Manag 20:135–150

    Article  Google Scholar 

  • Kramer K, Brang P, Bachofen H, Bugmann H, Wohlgemuth T (2014) Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests. For Ecol Manag 331:116–128

    Article  Google Scholar 

  • Kupferschmid Albisetti A (2003) Zerfall und Verjüngung eines Schutzwaldes nach dem Absterben der Fichten durch Buchdruckerbefall. GAIA 12:271–274

    Google Scholar 

  • Maringer J, Ascoli D, Küffer N, Conedera M (2016) What drives European beech (Fagus sylvatica L.) to death after forest fires of varying severities? For Ecol Manag 368:81–93

    Article  Google Scholar 

  • Maringer J, Conedera M, Ascoli D, Schmatz DR, Wohlgemuth T (in press) Resilience of European beech forests (Fagus sylvatia L.) after fire in a global climate change context. Int J Wildland Fire. doi:10.1071/WF15127

  • MeteoSwiss (2015) Swiss climate. Federal Office of Meteorology and Climatology. Zürich, Switzerland. http://www.meteoschweiz.admin.ch/home.html?tab=overview. Accessed 1 Feb 15

  • Morgan P, Keane RE, Dillon GK, Jain TB, Hudak AT, Karau EC, Sikkink PG, Holden ZA, Strand EK (2014) Challenges of assessing fire and burn severity using field measures, remote sensing and modeling. Int J Wildland Fire 23:1045–1060. doi:10.1071/WF13058

    Article  Google Scholar 

  • Motta R, Haudemand J (2000) Protective forests and silvicultural stability: an example of planning in the Aosta Valley. Mt Res Dev 20:180–187

    Article  Google Scholar 

  • O’Hara K (2006) Multiaged forest stands for protection forests: concepts and applications. For Snow Landsc Res 80:45–55

    Google Scholar 

  • Olschewski R, Bebi P, Teich M, Wissen Hayek U, Grêt-Regamey A (2012) Avalanche protection by forests—A choice experiment in the Swiss Alps. J For Policy Econ 15:108–113

    Article  Google Scholar 

  • Perzl F (2009) Die Buche—eine Baumart des Objektschutzwaldes. BFW—Praxisinformation 12:29–31

  • Pezzatti G, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (Southern Switzerland). Plant Biosyst 143:069–620. doi:10.1080/11263500903233292

    Article  Google Scholar 

  • Pezzatti G, Reinhard M, Conedera M (2010) Swissfire: die neue schweizerische Waldbranddatenbank. Swiss For J 161:465–469

    Article  Google Scholar 

  • Pfiffner AO (2015) Geologie der Alpen, 3rd edn. Haupt-Verlag, Bern

    Google Scholar 

  • Priewasser K, Brang P, Bachofen H, Bugmann H, Wohlgemuth T (2013) Impact of salvage-logging on the status of deadwood after windthrow in Swiss forests. Eur J For Res 2:231–240. doi:10.1007/s10342-012-0670-1

    Article  Google Scholar 

  • Regione Autonoma Valle d’Aosta (2010) Regione Piemonte Foreste di protezione Diretta. Disturbi naturali e stabilità nelle Alpi occidentali, Arezzo

    Google Scholar 

  • Rigling A, Schaffer HP (2015) Waldbericht 2015. Zustand und Nutzung des Schweizer Waldes. Eign, Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

    Google Scholar 

  • Schmidt O (2005) Zur Gefährdung der Hauptbaumarten aus Sicht des biotischen Waldschutzes. LWFaktuell 49:1–2

    Google Scholar 

  • Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manag 213:197–208. doi:10.1016/j.foreco.2005.03.062

    Article  Google Scholar 

  • Spinedi F, Isotta FA (2005) Il clima del Ticino negli ultimi 50 anni. Dati statistiche e società 4:4–39

    Google Scholar 

  • Vacchiano G, Berretti R, Borgogno Mondino E, Meloni F, Motta R (2016) Assessing the effect of disturbances on the functionality of direct protection forests. Mountain Research and Development. doi:10.1659/MRD-JOURNAL-D-15-00075.1

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren L, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Nat Hazard Earth Syst 11:2617–2651. doi:10.5194/nhess-11-2617-2011

    Article  Google Scholar 

  • Wagner S, Collet C, Madsen P, Nakashizuka T, Nyland R, Sagheb-Talebi K (2010) Beech regeneration research: from ecological to silvicultural aspects. For Ecol Manag 259:2172–2182. doi:10.1016/j.foreco.2010.02.029

    Article  Google Scholar 

  • Wehrli A, Dorren L, Berger F, Zingg A, Schönenberger W (2006) Modelling long-term effects of forest dynamics on the protective effect against rockfall. For Snow Landsc Res 80:57–76

    Google Scholar 

  • Wickham H, Chang W (2015) Package ‘ggplot2’. https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf. Accessed 1 Dec 2015

  • Wohlgemuth T, Brigger A, Gerold P, Laranjeiro L, Moretti M, Moser B, Rebetez M, Schmatz DR, Schneiter G, Sciacca S, Sierro A, Weibel P, Zumbrunnen T, Conedera M (2010) Leben mit Waldbrand. Merkblatt für die Praxis 46:1–16

    Google Scholar 

  • Zinggeler A, Krummenacher B, Kienholz H (1991) Steinschlagsimulation in Gebirgswäldern. Berichte und Forschungen des Geographischen Instituts der Universität Fribourg, Universität Fribourg

Download references

Acknowledgment

This study was supported in part by the Swiss Federal Office for the Environment (FOEN) and by the “Fondo di Ricerca Locale 2015–2016” of the University of Torino. Fieldwork assistance was carried out with the support of Franco Fibbioli, Simone Giavi, Marianne Steffen, Lisa Berghäuser, and Jordi Murgadas from the Swiss Federal Institute for Forest, Snow and Landscape Research and Sven Hofmann from the University of Karlsruhe (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Maringer.

Additional information

Handling editor: Dr. Christian Ammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

SM. 1 A low-severity burn 10 years post-fire (D.Ascoli). (EPS 41020 kb)

SM. 2 A moderate-severity burn six years post-fire (D.Ascoli). (EPS 39412 kb)

SM. 3 A high-severity burn four years post-fire (D.Ascoli). (EPS 33356 kb)

10342_2016_962_MOESM4_ESM.eps

SM. 4 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 75 m forested slopes and 27° slope inclination. (EPS 685 kb)

10342_2016_962_MOESM5_ESM.eps

SM. 5 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 75 m forested slopes and 30° slope inclination. (EPS 686 kb)

10342_2016_962_MOESM6_ESM.eps

SM. 6 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 75 m forested slopes and 35° slope inclination. (EPS 538 kb)

10342_2016_962_MOESM7_ESM.eps

SM. 7 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 150 m forested slopes and 27° slope inclination. (EPS 684 kb)

10342_2016_962_MOESM8_ESM.eps

SM. 8 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 150 m forested slopes and 30° slope inclination. (EPS 682 kb)

10342_2016_962_MOESM9_ESM.eps

SM. 9 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.05 m3, on 150 m forested slopes and 35° slope inclination. (EPS 692 kb)

10342_2016_962_MOESM10_ESM.eps

SM. 10 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 75 m forested slopes and 27° slope inclination. (EPS 651 kb)

10342_2016_962_MOESM11_ESM.eps

SM. 11 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 75 m forested slopes and 30° slope inclination. (EPS 674 kb)

10342_2016_962_MOESM12_ESM.eps

SM. 12 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 75 m forested slopes and 35° slope inclination. (EPS 684 kb)

10342_2016_962_MOESM13_ESM.eps

SM. 13 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 150 m forested slopes and 27° slope inclination. (EPS 684 kb)

10342_2016_962_MOESM14_ESM.eps

SM. 14 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 150 m forested slopes and 30° slope inclination. (EPS 689 kb)

10342_2016_962_MOESM15_ESM.eps

SM. 15 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 0.2 m3, on 150 m forested slopes and 35° slope inclination. (EPS 693 kb)

10342_2016_962_MOESM16_ESM.eps

SM. 16 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 75 m forested slopes and 27° slope inclination. (EPS 697 kb)

10342_2016_962_MOESM17_ESM.eps

SM. 17 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 75 m forested slopes and 30° slope inclination (EPS 694 kb)

10342_2016_962_MOESM18_ESM.eps

SM. 18 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 75 m forested slopes and 35° slope inclination (EPS 691 kb)

10342_2016_962_MOESM19_ESM.eps

SM. 19 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 150 m forested slopes and 27° slope inclination (EPS 996 kb)

10342_2016_962_MOESM20_ESM.eps

SM. 20 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 150 m forested slopes and 30° slope inclination (EPS 697 kb)

10342_2016_962_MOESM21_ESM.eps

SM. 21 Temporal trends in the protective capacity [%] of beech stands hit by low, moderate and high burn severity and the corresponding unburnt beech forests against rocks of 1 m3, on 150 m forested slopes and 35° slope inclination (EPS 697 kb)

10342_2016_962_MOESM22_ESM.eps

SM. 22 The influence of logs, snags (standing dead) and trees (standing alive) in the total protective capacity against rockfall for the burnt forests visualized separately for the five defined levels of protection (>=90% very good protection, 75–90% good protection, 50–75% adequate protection, 25–50% moderate protection, and < 25% inadequate protection (EPS 2751 kb)

10342_2016_962_MOESM23_ESM.eps

SM. 23 The influence of logs, snags (standing dead) and trees (standing alive) in the total protective capacity against rockfall for the unburnt forests visualized separately for the five defined levels of protection (>=90% very good protection, 75–90% good protection, 50–75% adequate protection, 25–50% moderate protection, and < 25% inadequate protection (EPS 2774 kb)

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 Investigated burns sorted by the date of fire
Table 4 Estimates and standard error of the mixed-effect model for stem densities modeled against slope inclination
Table 5 Linear regression models for temporal trends in the years post-fire (AGE) of the protective capacity of burnt beech stands differing in burn severity (low, moderate, high) and the corresponding unburnt forests

Slopes of the plots were measured in degree and implemented as the explanatory variable in a mixed-effect model with negative binomial distribution (Bolker et al. 2012). Stem densities served as the response variable, and because of the high intra-class correlation, burns were implemented as random effect in the model. The result shows that slope inclination was not significant at the 0.05-level (Table 4), and thus it was possible to use standardized slope inclination in the Rockfor.net tool. Against this background, the 1st (26.7°) and 3rd (35°) tertiles, as well as the mean (29.7°), were used as standardized slope inclinations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maringer, J., Ascoli, D., Dorren, L. et al. Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall. Eur J Forest Res 135, 657–673 (2016). https://doi.org/10.1007/s10342-016-0962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-016-0962-y

Keywords

Navigation