Skip to main content
Log in

Chemical Quality Attributes, Phenolic Compounds, and Antioxidant Properties of Wild and Cultivated Apricot (Prunus armeniaca L.) Accessions of North-Western Himalayas

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

In this study, the chemical quality attributes, phenolic compounds, and antioxidant capacity of 37 wild and cultivated apricot accessions were assessed. Apricots were collected from various locations in Jammu and Kashmir, India. Significant variation was recorded among the accessions in terms of the chemical quality attributes of total soluble solids (7.53–28.01°Brix), pH (1.14–4.06), and titratable acidity (0.260–2.14%). Catechin, epicatechin, and quercetin were the predominant phenolic compounds. Moreover, the currently studied apricot accessions presented a wide range of antioxidant capacity values, ranging from 21.27 to 92.22 μg ascorbic acid (ASA) g−1 fresh weight (FW). Statistical analysis revealed a positive correlation between phenolic components and antioxidant activity, whereas a negative correlation was observed between pH and catechin, epicatechin, antioxidant capacity, and total soluble solids (TSS). Based on principal component and cluster analyses using all measured variables, wild accessions were clearly distinguished from cultivated accessions. The present findings show that wild accessions had the highest fruit quality attributes, phenolic compounds, and antioxidant capacities. As little information is available on the chemical quality attributes, phenolic compounds, and antioxidants of wild and cultivated apricot accessions of Jammu and Kashmir, the information provided here will be useful for the identification of superior apricot accessions with the potential to contribute to health promotion and illness prevention as well as for future apricot breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Masud T, Abbasi KS (2011) Physico-chemical characteristics of apricot (Prunus armeniaca L.) grown in Northern Areas of Pakistan. Sci Hortic 130:386–392

    CAS  Google Scholar 

  • Angmo P, Angmo S, Upadhyay SS et al (2017) Apricots (Prunus armeniaca L.) of trans-Himalayan Ladakh: Potential candidate for fruit quality breeding programs. Sci Hortic 218:187–192

    Google Scholar 

  • Asma BM, Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genet Resour Crop Evol 52:305–313

    Google Scholar 

  • Audergon JM, Duffillol JM, Souty M et al (1991) Biochemical and physicochemical characterisation of 400 apricot varieties. Consequences in the apricot selection and improvement process

    Google Scholar 

  • Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng 117:426–436

    CAS  Google Scholar 

  • Bartolini S, Leccese A, Remorini D et al (2018) Quality and antioxidant traits of organic apricots (Prunus armeniaca L.) at harvest and after storage

    Google Scholar 

  • Belhadj F, Somrani I, Aissaoui N et al (2016) Bioactive compounds contents, antioxidant and antimicrobial activities during ripening of Prunus persica L. varieties from the North West of Tunisia. Food Chem 204:29–36

    CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier M‑E, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Campbell OE, Merwin IA, Padilla-Zakour OI (2013) Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of northeast USA apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 61:12700–12710

    CAS  PubMed  Google Scholar 

  • Cao S, Liang M, Shi L et al (2017) Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chem 214:137–146

    CAS  PubMed  Google Scholar 

  • Carbone K, Ciccoritti R, Paliotta M et al (2018) Chemometric classification of early-ripening apricot (Prunus armeniaca L.) germplasm based on quality traits, biochemical profiling and in vitro biological activity. Sci Hortic 227:187–195

    CAS  Google Scholar 

  • Cohen S, Itkin M, Yeselson Y et al (2014) The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun 5:1–9

    CAS  Google Scholar 

  • Crisosto CH, Garner D, Crisosto GM, Bowerman E (2004) Increasing ‘Blackamber’plum (Prunus salicina Lindell) consumer acceptance. Postharvest Biol Technol 34:237–244

    Google Scholar 

  • Çuhacı Ç, Karaat FE, Uğur Y et al (2021) Fruit quality and biochemical characteristics of new early ripening apricots of Turkey. J Food Meas Charact 15:841–850

    Google Scholar 

  • Dragovic-Uzelac V, Pospišil J, Levaj B, Delonga K (2005) The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. Food Chem 91:373–383

    CAS  Google Scholar 

  • Dragovic-Uzelac V, Levaj B, Mrkic V et al (2007) The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem 102:966–975

    CAS  Google Scholar 

  • Drogoudi PD, Vemmos S, Pantelidis G et al (2008) Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J Agric Food Chem 56:10754–10760

    CAS  PubMed  Google Scholar 

  • Gecer MK, Kan T, Gundogdu M et al (2020) Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet Resour Crop Evol 67:935–945

    CAS  Google Scholar 

  • Gentile C, Di Gregorio E, Di Stefano V et al (2019) Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chem 277:471–479

    CAS  PubMed  Google Scholar 

  • Goldenberg L, Yaniv Y, Doron-Faigenboim A et al (2016) Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions. J Sci Food Agric 96:57–65

    CAS  PubMed  Google Scholar 

  • Gündoğdu M, Kan T, Gecer MK (2013) Vitamins, flavonoids, and phenolic acid levels in early-and late-ripening apricot (Prunus armeniaca L.) cultivars from Turkey. HortScience 48:696–700

    Google Scholar 

  • Gundogdu M, Ercisli S, Berk S et al (2017) Diversity on color and phenolic compounds in apricot fruits. J Food Meas Charact 11:2087–2093

    Google Scholar 

  • Guyot S, Marnet N, Sanoner P, Drilleau J‑F (2001) Direct thiolysis on crude apple materials for high-performance liquid chromatography characterization and quantification of polyphenols in cider apple tissues and juices. Methods Enzymol 335:57–70

    CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hegedüs A, Pfeiffer P, Papp N et al (2011) Accumulation of antioxidants in apricot fruit through ripening: characterization of a genotype with enhanced functional properties. Biol Res 44:339–344

    PubMed  Google Scholar 

  • Hong Y, Wang Z, Barrow CJ et al (2021) High-throughput screening and characterization of phenolic compounds in stone fruits waste by LC-ESI-QTOF-MS/MS and their potential antioxidant activities. Antioxidants 10:1–22

    Google Scholar 

  • Jaafar HJ (2021) Effects of apricot and apricot kernels on human health and nutrition: a review of recent human research. Tech BioChemMed 2:139–162

    Google Scholar 

  • Leccese A, Bartolini S, Viti R (2008) Total antioxidant capacity and phenolics content in fresh apricots. Acta Aliment 37:65–76

    CAS  Google Scholar 

  • Leccese A, Bartolini S, Viti R (2012) Genotype, harvest season, and cold storage influence on fruit quality and antioxidant properties of apricot. Int J Food Prop 15:864–879

    CAS  Google Scholar 

  • Legua P, Forner-Giner MÁ, Nuncio-Jáuregui N, Hernández F (2016) Polyphenolic compounds, anthocyanins and antioxidant activity of nineteen pomegranate fruits: A rich source of bioactive compounds. J Funct Foods 23:628–636

    CAS  Google Scholar 

  • Lo Bianco R, Farina V, Indelicato SG et al (2010) Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. J Sci Food Agric 90:1008–1019

    CAS  PubMed  Google Scholar 

  • Milošević T, Milošević N, Glišić I, Krška B (2010) Characteristics of promising apricot (Prunus armeniaca L.) genetic resources in Central Serbia based on blossoming period and fruit quality. Hortic Sci 37:46–55

    Google Scholar 

  • Mokrani A, Madani K (2016) Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol 162:68–76

    CAS  Google Scholar 

  • Mratinić E, Popovski B, Milošević T, Popovska M (2011) Evaluation of apricot fruit quality and correlations between physical and chemical attributes. Czech J Food Sci 29:161–170

    Google Scholar 

  • Nowicka P, Wojdylo A, Laskowski P (2019) Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. Eur Food Res Technol 245:929–938

    CAS  Google Scholar 

  • Raji R, Jannatizadeh A, Fattahi R, Esfahlani MA (2014) Investigation of variability of apricot (Prunus armeniaca L.) using morphological traits and microsatellite markers. Sci Hortic 176:225–231

    CAS  Google Scholar 

  • Roussos PA, Sefferou V, Denaxa N‑K et al (2011) Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Sci Hortic 129:472–478

    CAS  Google Scholar 

  • Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158

    CAS  Google Scholar 

  • Ruiz D, Egea J, Gil MI, Tomás-Barberán FA (2005) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53:9544–9552

    CAS  PubMed  Google Scholar 

  • da Silva BV, Barreira JC, Oliveira MBP (2016) Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci Technol 50:144–158

    Google Scholar 

  • Su C, Zheng X, Zhang D et al (2020) Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. J Food Sci 85:4300–4311

    CAS  PubMed  Google Scholar 

  • Targais K, Stobdan T, Yadav A, Singh SB (2011) Extraction of apricot kernel oil in cold desert Ladakh, India

    Google Scholar 

  • Tomás-Barberán FA, Ruiz D, Valero D et al (2013) Health benefits from pomegranates and stone fruit, including plums, peaches, apricots and cherries. Bioact Fruit Health Benefits Funct Foods 19:125–167

    Google Scholar 

  • Zargar SA, Wani AA, Saggoo MIS (2021) Analysis of phenotypic diversity of apricot (Prunus armeniaca L.) accessions from Jammu and Kashmir, India. Plant Genet Resour 19:203–215

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Head, Department of Botany, Punjabi University, Patiala, Head, Department of Botany, University of Kashmir, Srinagar, and the Director CITH, Rangreth, Srinagar for their cooperation and support. Further, the authors are extremely grateful to the local apricot growers and the Director of Horticulture of Jammu & Kashmir, for allowing sample collections during our field surveys.

Author information

Authors and Affiliations

Authors

Contributions

S.A. Zargar: Data collection, Experimental execution, Data analysis, and Manuscript writing; A.A. Wani, MIS Saggoo: Experimental design and Supervision; N. Kumar, J.I. Mir and S. Jan: Experimental execution. S. Dabbou: Writing—Review & Editing. All the authors approved the final draft of the manuscript for submission.

Corresponding author

Correspondence to Showkat A. Zargar.

Ethics declarations

Conflict of interest

S.A. Zargar, A.A. Wani, M. I. S. Saggoo, N. Kumar, J.I. Mir, S. Jan and S. Dabbou declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

Availability of data

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, S.A., Wani, A.A., Saggoo, M.I.S. et al. Chemical Quality Attributes, Phenolic Compounds, and Antioxidant Properties of Wild and Cultivated Apricot (Prunus armeniaca L.) Accessions of North-Western Himalayas. Erwerbs-Obstbau 65, 2325–2336 (2023). https://doi.org/10.1007/s10341-023-00937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-023-00937-1

Keywords

Navigation