Skip to main content
Log in

Investigation of Means of Biological Control of Diaporthe foeniculina, a Fruit Rot Agent in Lemon

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Biological control is successfully applied against fungal diseases that agricultural products are exposed to in the process from the production stage to reaching the consumer. The aim of this study was to determine the bacterial biological control agents that can be used against Diaporthe foeniculina of the genus Diaporthe, which is an important fungal disease agent in lemon. The aim was to investigate the antagonistic activity of 36 bacterial strains belonging to eight different genera (eight Bacillus megaterium, seven B. subtilis, three B. pumilus, two B. cereus, two Pseudomonas chlororaphis, two P. flourescens, one B. atrophaeus, three Pantoea agglomerans, one Agrobacterium radiobacter, one Brevibacillus brevis, one B. choshinensis, one Kluyvera cryocrescens, one Kocuri rosea, one Paenibacillus macerans, one P. putida and one unidentified), which were isolated from different plants and to determine antagonistic activity against D. foeniculina ET 88 isolate in in vitro conditions. According to the in vitro test results, these bioagent bacterial strains inhibited mycelial growth of D. foeniculina between 17.86 and 89.29%. TV 53D strain of B. choshinensis (89.29%) was the most effective, followed by TV 6F strain (86.90%) of B. subtilis, FDG 37 strain (86.90%) of P. fluorescens and A 16 strain (82.74%) of A. radiobacter. This study will make a significant contribution to the literature as it is the first biological control study against D. foeniculina. In future studies, it is of great importance to test effective bioagent bacterial strains on lemon fruits under different storage conditions and to develop commercial preparations of effective bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akgün C (2006) Citrus sector profile. Foreign trade service application branch, Turkey (in Turkish). https://docplayer.biz.tr/20684676-Turuncgiller-sektor-profili.html. Accessed 10 Mar 2019

  • Aktas S, Kotan R (2016) An investigation of the potential for biological control of tomato pith necrosis by using bio-control bacteria and PGPR under controlled conditions. Turk J Biol Control 7(2):89–110

    Google Scholar 

  • Askın A, Katırcıoglu YZ (2008) Determination of pathogenicity of the precipitating damping off disease in tomato seedlings in the provinces of Ayaş Beypazarı and Nallıhan in Ankara. Plant Prot Bull 48(2):49–59 (in Turkish)

    Google Scholar 

  • Benli M (2003) Chemical and biological control of fungal diseases after harvest. Orlab Line J Mikrobiol 1(8):1–25

    Google Scholar 

  • Bora T, Ozaktan H (1998) Biological control of plant diseases. Prizma Press, Izmir, p 205 (in Turkish)

    Google Scholar 

  • Çakar G, Tozlu E (2022) The biological control of Fusarium oxysporum, the causal agent of potato rot. Gesunde Pflanz. https://doi.org/10.1007/s10343-021-00610-1

    Article  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world-pesticides use and management. InTech, Rijeka, pp 274–302

    Google Scholar 

  • Chen K, Tian Z, Luo Y, Cheng Y, Long C (2018) Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH‑4 against citrus green mold. Phytopathology 108:1253–1262

    CAS  PubMed  Google Scholar 

  • Cherif M, Benhamou N, Belanger RR (1992) Occurrence of cellulose and chitin in the hyphal cell walls of Pythium ultimum: A comparative study with other plant pathogenic fungi. Can J Microbiol 39:213–222

    Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dadasoglu F, Sahin F (2010) Use of bacteria in biological control of Malacosoma neustria L. (Lepidoptera: Lasiocampidae). Atatürk Univ J Agric Fac 41(2):97–104 (in Turkish)

    Google Scholar 

  • Díaz GA, Latorre BA, Lolas M, Ferrada E, Naranjo P, Zoffoli JP (2017) Identification and characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis causing a postharvest fruit rot in kiwifruit. Plant Dis 101:1402–1410

    PubMed  Google Scholar 

  • Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit Rev Food Sci Nutr 59(9):1498–1513

    CAS  PubMed  Google Scholar 

  • Ekinci M, Turan M, Yıldırım E, Gunes A, Kotan R, Dursun A (2014) Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci Polonorum 13(6):71–85

    Google Scholar 

  • Ekinci M, Yıldırım E, Kotan R (2015) Effects of different plant growth promoting rhizobacteria on growth and quality of broccoli (Brassica oleraceae L. var. italica) seedling. Akdeniz Univ J Agric 28(2):53–59

    Google Scholar 

  • El Ghaouth A, Wilson CL, Wisniewski M, Droby S, Smilanick JL, Korsten L (2002) Biological control of postharvest diseases of citrus fruits. In: Gnanamanickam SS (ed) Biological control of crop diseases. University of Madras-Guindy Chennai, Tamil Nadu, pp 291–312

    Google Scholar 

  • Elshafie HS, Camele I, Racioppi R, Scrano L, Iacobellis NS, Bufo SA (2012) In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci 13:16291–16302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K, Sezen M (2010) Effect of nitrogen fixing and phosphate solubilizing rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. In: Turkey IV. Organic Farming Symposium, 28 June–1 July, Erzurum, Turkey, pp 325–329

    Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  • Francés J, Bonaterra A, Moreno MC, Cabrefiga J, Badosa E, Montesinos E (2006) Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biol Technol 39:299–307

    Google Scholar 

  • Francesco D, Martini AC, Mari M (2016) Biological control of postharvest diseases by microbial antagonists: How many mechanisms of action? Eur J Plant Pathol 145(4):711–717

    Google Scholar 

  • Gao YH, Lui F, Duan W, Crous PW, Cai L (2017) Diaporthe is paraphyletic. IMA Fungus 8:153–187

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Reyne A, López-Medrano F, Morales JM, Esteban CG, Martín I, Eraña I, Meije Y, Lalueza A, Alastruey-Izquierdo A, Rodríguez-Tudela JL, Aguado JM (2011) Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: first report of human infection by this fungus. Transpl Infect Dis 13:204–207

    CAS  PubMed  Google Scholar 

  • Ginnan NA, Dang T, Bodaghi S, Ruegger PM, McCollum G, England G, Vidalakis G, Borneman J, Rolshausen PE, Roper MC (2020) Disease-induced microbial shifts in citrus indicate microbiome-derived responses to huanglongbing across the disease severity spectrum. Phytobiomes J 4(4):375–387

    Google Scholar 

  • Gökçe AY, Kotan R (2016) Investigation of biological control possibilities of wheat root rot disease caused by Bipolaris sorokiniana (Sacc.) using PGPR and bio-control bacteria in controlled condition. Plant Prot Bull 56(1):49–75

    Google Scholar 

  • Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnaccia V, Crous PW (2017) Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 8(2):317–334

    PubMed  PubMed Central  Google Scholar 

  • Güneş A, Karagöz K, Turan M, Kotan R, Yıldırım E, Çakmakçı R, Şahin F (2015) Fertilizer effiency of some plant growth promoting rhizobacteria for plant growth. Res J Soil Biol 7(2):28–45

    Google Scholar 

  • Hassi M, Guendouzi SE, Haggoud A, David S, Ibnsouda S, Houari A, Iraqui M (2012) Antimycobacterial activity of a Brevibacillus laterosporus strain isolated from a Moroccan soil. Braz J Microbiol 43(4):1516–1522

    PubMed  PubMed Central  Google Scholar 

  • Holmes GJ, Eckert JW (1999) Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology 89:716–721

    CAS  PubMed  Google Scholar 

  • Joseph A, Igbinosa OB, Alori ET, Ademiluyi BO, Aluko AP (2017) Effectiveness of Pseudomonas species in the management of tomato early blight pathogen Alternaria solani. Afr J Microbiol Res 11(23):972–976. https://doi.org/10.5897/EJMR2017.8564

    Article  CAS  Google Scholar 

  • Karagöz K, Kotan R (2010) Effects of some plant growth promoting bacteria on growth of lettuce and Bacterial leaf spot disease. Turk J Biol Control 1(2):165–179

    Google Scholar 

  • Karahocagil P, Tunalioglu R, Taskaya B, Anac H (2003) Citrus situation and forecast: 2003/2004. Publication, vol 111. Agricultural Economics Research Institute, Ankara, p 74 (in Turkish)

    Google Scholar 

  • Karakurt H, Kotan R, Dadaşoğlu F, Aslantaş R, Şahin F (2011) Effects of plant growth promoting rhizobacteria on fruit set pomological and chemical characteristics color values and vegetative growth of sour cherry Prunus cerasus cv. Kutahya. Turk J Biol 35:283–291

    CAS  Google Scholar 

  • Ketabchi S, Taghipour MA, Sharzei A (2012) Identification of lime fruit surface colonizing bacteria antagonistic against the green mold and comparison of biological control with heat treatment and chemical control. Asian J Exp Biol Sci 3:287–292

    Google Scholar 

  • Klement Z (1968) Pathogenicity factors in reard to relationships of phytopathogenic bacteria. Phytopathology 58:1218–1222

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Kotan R, Dikbas N, Bostan H (2009) Biological control of post harvest disease caused by Aspergillus flavus on stored lemon fruits. Afr J Biotechnol 8(2):209–214

    Google Scholar 

  • Kotan R, Şahin F, Demirci E, Eken C (2011) Biological control of the potato tubers dry rot caused by Fusarium species using PGPR strains. Biol Control 59(3):194–198

    Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    CAS  PubMed  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of b‑1,3‑glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight pathogens. Enzym Microb Technol 38:990–997

    CAS  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160

    PubMed  Google Scholar 

  • Maldonado MC, Corona J, Gordillo MA, Navarro AR (2009) Isolation and partial characterization of antifungal metabolites produced by Bacillus sp. IBA 33. Curr Microbiol 59:646–650

    CAS  PubMed  Google Scholar 

  • Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher RK, Spies CFJ, Thangavel R, Taylor PWJ, Wilson AM, Wingfield BD, Wood AR, Crous PW (2019) Genera of phytopathogenic fungi: GOPHY2. Stud Mycol 92:47–133

    CAS  PubMed  Google Scholar 

  • Matei A, Cornea CP, Matei S, Matei GM, Rodino S (2015) Comparative antifungal effect of lactic acid bacteria strains on Penicillium digitatum. Bull UASVM Food Sci Technol 72:226–230

    CAS  Google Scholar 

  • Mazzola M, Freilich S (2017) Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes. Phytopathology 107:256–263

    CAS  PubMed  Google Scholar 

  • Mohammadi P (2018) Evaluation of biological control of (Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al.) bacterial wilt and canker of tomato by antagonisiıc bacteria. PhD, Atatürk University Graduate School of Natural and Applied Sciences, Erzurum, Turkey, 112 p

  • Mohammadi P, Tozlu E, Kotan R (2014) Screening of antagonistic bacteria for biological control of green mold caused by Penicillium digitatum Sacc. of citrus fruits. In: Proceeding of the 21th Iranian Plant Protection Congress. Urmia, Iran, p 189

    Google Scholar 

  • Mohammadi P, Tozlu E, Kotan R, Şenol Kotan M (2017) Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Prot Sci 53(3):1–10

    Google Scholar 

  • Mostert L, Crous PW, Kang JC, Phillips AJL (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: Morphological, cultural, molecular and pathological characterization. Mycologia 93:146–167

    Google Scholar 

  • Mota MS, Gomes CB, Souza IT, Moura AB (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz J Microbiol 48:62–70

    CAS  PubMed  Google Scholar 

  • van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, Crous PW (2005) Reassessment of Phomopsis species on grapevines. Australas Plant Pathol 34:27–39

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    CAS  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol Sclerotium rolfsii. Phytopathology 78:84–87

    CAS  Google Scholar 

  • Palou L, Valencia-Chamorro SA, Pérez-Gago MB (2015) Antifungal edible coatings for fresh citrus fruit: a review. Coatings 5:962–986

    CAS  Google Scholar 

  • Pimenta RS, Silva FL, Silva JFM, Morais PB, Braga DT, Rosa CA, Corrêa A (2008) Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Braz J Microbiol 39:85–90

    PubMed  PubMed Central  Google Scholar 

  • Ramírez V, Martínez J, Bustillos-Cristales MR, Dolores CA, Munive JA, Baez A (2021) Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J Appl Microbiol 132(1):470–482. https://doi.org/10.1111/jam.15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Şahinoğlu E, Tozlu E (2019) An investigation of biological control possibilities against Fusarium proliferatum on conic red pepper. 2nd International Conference on Food, Agriculture and Animal Sciences (ICOFAAS), 8–11 November 2019, Antalya, TURKEY

  • Saligkarias ID, Gravanis FT, Harry AS (2002) Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I‑182: II. A study on mode of action. Biol Control 25:151–161

    CAS  Google Scholar 

  • Santos JM, Phillips AJL (2009) Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers 34:111–125

    Google Scholar 

  • Santos JM, Vrandecic K, Cosic J, Duvnjak T, Phillips AJL (2011) Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia 27:9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) “Tracking” a strain using the microbial identification system. MIDI technical note, vol 102. MIDI, Newark

    Google Scholar 

  • Senthilkumar M, Swarnlakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Curr Microbiol 58:288–293

    CAS  PubMed  Google Scholar 

  • Şimsek S, Kabasakal A, Eraslan M, Börekci E (1980) The incidence and cause of citrus spoilage. (Icel ilinde bazi turuncgil meyvelerinin (Citrus spp.) ambalajlanmasinda iskartaya ayrilma oranlari ve nedenleri.). Tarimsal Araştırma Dergisi 2(1):17–21

    Google Scholar 

  • Sudyoung N, Tokuyama S, Krajangsang S, Pringsulaka O, Sarawaneeyaruk S (2020) Bacterial antagonists and their cell-free cultures efficiently suppress canker disease in citrus lime. J Plant Dis Prot 127:173–181

    Google Scholar 

  • Sunita C, Eunice JA, Steve W (2010) Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158:470–478

    Google Scholar 

  • Talibi I, Boubaker H, Boudyach EH, Aoumar AAB (2014) Alternative methods for the control of post harvest citrus diseases. J Appl Microbiol 117:1–17

    CAS  PubMed  Google Scholar 

  • Tekiner N, Tozlu E, Kotan R (2019a) Biological control of Alternaria alternata (Fr.) Keissler’s in in vitro conditions tomatoes by bacteria. Plant Prot Bull 59(4):57–68

    Google Scholar 

  • Tekiner N, Tozlu E, Kotan R (2019b) Investigation of biological control possibility of Anthracnose disease agent, Colletotrichum gloeosporioides, on orange. Atatürk Univ J Agric Fac 50(3):282–291 (in Turkish with an abstract in English)

    Google Scholar 

  • Tekiner N, Tozlu E, Guarnaccia V (2020) First report of Diaporthe foeniculina causing fruit rot of lemon in Turkey. J Plant Pathol 102:277. https://doi.org/10.1007/s42161-019-00413-4

    Article  Google Scholar 

  • Thonglem K, Plikomol A, Pathom-aree W (2007) Growth inhibition of Penicillium digitatum by antagonistic microorganisms isolated from various parts of orange tree. Maejo International J Sci Technol 1:208–215

    Google Scholar 

  • Tian Z, Chen C, Chen K, Liu P, Fan Q, Zhao J, Long CA (2020) Biocontrol and the mechanisms of Bacillus sp. w176 against postharvest green mold in citrus. Postharvest Biol Technol 159:111022

    CAS  Google Scholar 

  • Tozlu E, Dadasoglu F, Kotan R, Tozlu G (2011) Insecticidal effect of some bacteria on Bruchus dentipes Baudi (Coleoptera: Bruchidae). Fresenius Environ Bull 20:918–923

    CAS  Google Scholar 

  • Tozlu E, Tekiner N, Tozlu G, Kotan R, Calmaşur O, Gokturk T, Dadasoglu F (2020) The investigation of the biological control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with entomopathogenic fungi and bacteria. Alınteri J Agric Sci 35(1):50–56. https://doi.org/10.28955/alinterizbd.741562

    Article  Google Scholar 

  • Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189–225

    Google Scholar 

  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus Diaporthe: Phylogenetic species delimitation in the D. eres species complex. Fungal Divers 67:203–229

    Google Scholar 

  • Varol AF (2008) Investigation of the effectiveness of some disinfectants against tomato seed root rotors (Pythium spp., Rhizoctonia spp., Fusarium spp.). Ege Univ Natural Science Institue, Department of Plant Protection, Master Thesis pp 71

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    CAS  Google Scholar 

  • Wang C, Wang Y, Wang L, Fan W, Zhang X, Chen X, Wang M, Wang J (2021) Biocontrol potential of volatile organic compounds from Pseudomonas chlororaphis ZL3 against postharvest gray mold caused by Botrytis cinerea on Chinese cherry. Biol Control 159:104613. https://doi.org/10.1016/j.biocontrol.2021.104

    Article  CAS  Google Scholar 

  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS ONE 7(1):e29452. https://doi.org/10.1371/journal.pone.0029452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Mei X, Du M, Chen K, Jiang M, Wang K, Zalan Z, Kan J (2020) Potential modes of action of Pseudomonas fluorescens ZX during biocontrol of blue mold decay on postharvest citrus. J Sci Food Agric 100(2):744–754

    CAS  PubMed  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250–256

    PubMed  Google Scholar 

  • Wilson CL, Wisniewski ME, Biles CL, McLaughlin R, Chalutz E, Droby S (1991) Biological control of postharvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Prot 10:172–177

    Google Scholar 

Download references

Funding

No funding

Author information

Authors and Affiliations

Authors

Contributions

RK, ET and VG conceived and designed research. NT conducted experiments. NT and ET studied antifungal effect of bacterial strains. NT, ET and RK studied controlled assay. ET analyzed data. VG checked MS language. All authors wrote, read and approved the final manuscript.

Corresponding author

Correspondence to Elif Tozlu.

Ethics declarations

Conflict of interest

N. Tekiner Aydın, E. Tozlu, R. Kotan and V. Guarnaccia declare that they have no competing interests.

Ethical standards

Not applicable. Consent for publication: Not applicable.

Additional information

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekiner Aydın, N., Tozlu, E., Kotan, R. et al. Investigation of Means of Biological Control of Diaporthe foeniculina, a Fruit Rot Agent in Lemon. Erwerbs-Obstbau 65, 1675–1684 (2023). https://doi.org/10.1007/s10341-022-00825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00825-0

Keywords

Navigation