Skip to main content

Advertisement

Log in

Responses to Single and Combined Application of Humic Acid and Silicon Under Water Stress on Strawberry

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

An Erratum to this article was published on 02 September 2022

This article has been updated

Abstract

Water stress is an important form of abiotic stress affecting plant growth and yield, and it results in a quality reduction in horticultural crops. Strawberry is profoundly affected by water stress due to its shallow root system. Therefore, it needs proper irrigation methods. This study was carried out to determine the effect of single and combined applications of humic acid (HA) and silicon (Si) under water stress conditions for the short term (September to December) on strawberry (cv. Rubygem [Yaltir Agricultural Products Inc., Adana]). In this context, it was investigated to reveal the effect of these applications on morphological, physiological, and biochemical characteristics as well as mineral contents in this plant. Three different irrigation levels (100%, 70%, and 40% of the field capacity) were investigated with the addition of only HA (5 mmol L−1), Si (5 mmol L−1), or a combination of HA (5 mmol L−1) and Si (5 mmol L−1) to each water level. Water stress resulted in a decrease in fresh and dry total plant weights (FTPW, DTPW respectively) leaf area (LA), chlorophyll contents (Chll), stomatal conductance (SC), leaf relative water contents (LRWC), and Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg) mineral contents of leaves. On the other hand, it was caused to an increase in membrane permeability (MP), leaf temperature (LT), L‑Proline, and malondialdehyde contents (MDA). HA and Si applications significantly reduced the adverse effects of water stress on most of the mentioned parameters. Combined applications were found to be more effective on some morphological, physiological, and biochemical features than single applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Abdalla MM, El-Khoshiban NH (2007) The ınfluence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars. J Appl Sci Res 3(12):2062–2074

    CAS  Google Scholar 

  • Adak N, Gubbuk H, Tetik N (2018) Yield, quality, and biochemical properties of various strawberry cultivarsunder water stress. J Sci Food Agric 98(1):304–311. https://doi.org/10.1002/jsfa.8471

    Article  CAS  PubMed  Google Scholar 

  • Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58:343–351. https://doi.org/10.1093/oxfordjournals.aob.a087212

    Article  CAS  Google Scholar 

  • Aghaiea P, Hosseini Tafreshi SA, Ebrahimi MA, Haerinasab M (2018) Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Sci Hortic 232:1–12. https://doi.org/10.1016/j.scienta.2017.12.041

    Article  Google Scholar 

  • Aghanejad M, Mahfoozi S, Sharghi Y (2015) Effects of late-season drought stress on some physiological traits. Yield and yield components of wheat. Genotypes Biol Forum 7(1):1426–1431

    Google Scholar 

  • Alizadeh A, Alizade V, Nassery L, Eivazi A (2011) Effect of drought stress on apple dwarf rootstocks. Tech J Engin App Sci 1(3):86–94

    Google Scholar 

  • Aras S, Eşitken A (2018) Silisyumun çilek bitkisinde tuz stresine etkileri. Harran Tarım Ve Gıda Bilimleri Derg 22(4):478–483. https://doi.org/10.29050/harranziraat.436131

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T (2014) The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci World J. https://doi.org/10.1155/2014/769732

    Article  Google Scholar 

  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T (2016) Morphological, physiological, biochemical characteristics, and bud success responses of myrobolan 29 C plum rootstock subjected to water stress. Can J Plant Sci 96(3):485–493. https://doi.org/10.1139/cjps-2015-0260

    Article  CAS  Google Scholar 

  • Boutraa T, Akhkha A, Abdulkhaliq AS, Alhejeli AM (2010) Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J Taibah Univ Sci 3:39–48. https://doi.org/10.1016/S1658-3655(12)60019-3

    Article  Google Scholar 

  • Coskun D, Brito DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1–7

    Article  Google Scholar 

  • Cırak C, Esendal E (2006) Soyada Kuraklık Stresi. OMÜ Zir Fak Derg 21(2):231–237

    Google Scholar 

  • David PP, Nelson PV, Sanders DC (1994) A humic acid ımproves growth of tomato seedling in solution culture. J of Plant Nutrition 17(1):173–184. https://doi.org/10.1080/01904169409364717

    Article  CAS  Google Scholar 

  • Dehghanıpoodeh S, Ghobadı C, Banınasab B, Gheysarı M, Shıranıbıdabadı S (2018) Effect of silicon on growth and development of strawberry under water deficit conditions. Horticult Plant J 4(6):226–232. https://doi.org/10.1016/j.hpj.2018.09.004

    Article  Google Scholar 

  • Desoky EM, Rady MM, Merwad MA (2018) Response of water deficit-stressed vigna unguiculata performances to silicon, proline, or methionine foliar application. Sci Hortic 228:132–144. https://doi.org/10.1016/j.scienta.2017.10.008

    Article  CAS  Google Scholar 

  • Dey KSP (2011) Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency, and yield of strawberry. Sci Hortic 127:318–324. https://doi.org/10.1016/j.scienta.2010.10.023

    Article  Google Scholar 

  • Emam Y, Shekoofa A, Salehi F, Jalali AH (2010) Water stress effects on two common bean cultivars with contrasting growth habits. Am J Agric Environ Sci 9(5):495–499. https://doi.org/10.1080/03650340.2010.530256

    Article  Google Scholar 

  • Fagbenro JA, Agboda AA (1993) Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. J Plant Nutrition 16(8):1465–1483. https://doi.org/10.1080/01904169309364627

    Article  CAS  Google Scholar 

  • Filek M, Walas S, Mrowiec H, Rudo MDhy-Skorska E, Sieprawska A, Biesaga-Koscielniak J (2012) Membrane permeability and micro and macroelement accumulation in spring wheat cultivars during the short term effect of salinity and peginduced water stress. Acta Physiol Plant 34:985–995. https://doi.org/10.1007/s11738-011-0895-5

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    Article  CAS  Google Scholar 

  • Hajiboland R, Cheraghvareh L, Poschenrieder C (2017) Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. J Plant Nutr. https://doi.org/10.1080/01904167.2017.1310887

    Article  Google Scholar 

  • Hajiboland R, Moradtalab N, Eshaghi Z, Feizy J (2018) Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. N Z J Crop Hortic Sci 46(2):144–161. https://doi.org/10.1080/01140671.2017.1373680

    Article  Google Scholar 

  • Hamidou F, Zombre G, Braconnıer S (2007) Physiological and biochemical responses of Cowpea genotypes to water stress under glasshouse and field conditions. J Agron Crop Sci 193(4):229–237. https://doi.org/10.1111/j.1439-037X.2007.00253.x

    Article  CAS  Google Scholar 

  • Hayatu M, Mukhtar FB (2010) Physiological responses of some drought-resistant Cowpea genotypes (Vigna unguiculata L.) to water stress. Bayero J Pure Appl Sci 3(2):69–75

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Coll Agric Exp Str Circ 347:1–32

    Google Scholar 

  • Hu Y, Schmidhalter U (2005) A comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549. https://doi.org/10.1002/jpln.200420516

    Article  CAS  Google Scholar 

  • Jimenez S, Dridi J, Gutierrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical, and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 33:1061–1075. https://doi.org/10.1093/treephys/tpt074

    Article  CAS  PubMed  Google Scholar 

  • Jones H (2004) What is water use efficiency. Blackwell, Oxford, pp 27–41

    Google Scholar 

  • Kacar B (1994) Bitki ve Toprağın Kimyasal Analizleri: III Toprak Analizleri. A. Ü. Z. F. Eğitim Araştırma ve Geliştirme Vakfı Yayınları No: 3. Ankara (705 s)

    Google Scholar 

  • Karimi S, Yadollahi A, Nazari-Moghadam R, Imani A, Arzani K (2012) In vitro screening of almond (Prunus dulcis (Mill.)) genotypes for drought tolerance. J Biol Environ Sci 6(18):263–270

    Google Scholar 

  • Khan AN, Qureshi RH, Ahmad N (2004) Salt tolerance of cotton cultivars in relation to relative growth rate in saline environments. Int J Agric Biol 6(5):786–787

    Google Scholar 

  • Kim JK, Park SY, Lim SH, Yeo Y, Cho HS, Ha SH (2013) Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. Jcereal Sci 57:14–20. https://doi.org/10.1016/j.jcs.2012.09.012

    Article  CAS  Google Scholar 

  • Klamkowskı K, Treder W (2008) Response to drought stress of three strawberry cultivars grown under greenhouse condition. J Fruit Ornam Plant Res 16:179–188

    Google Scholar 

  • Kunc Ş (2002) Hümik asitlerin tarımda kullanımı. Hasad Derg 204:46–58

    Google Scholar 

  • Kusvuran S (2010) Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, vol 356

    Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-Induced senescence in leaves of rice (Oryza Sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398. https://doi.org/10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  • Mancuso S, Azzarello E (2002) Heat tolerance in olive. Heat tolerance in olive.1000–1006

  • Morales CG, Pino MT, Del Pozoc A (2013) Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Sci Hortic 162:234–241. https://doi.org/10.1016/j.scienta.2013.07.025

    Article  CAS  Google Scholar 

  • Nogues S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV‑B radiation. J Exp Bot 51(348):1309–1317. https://doi.org/10.1093/jxb/51.348.1309

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Gıannakoula A, Ilias I, Zamanidis P (2016) Alleviation of drought and salinity stresses on growth, physiology, biochemistry, and quality of two (Cucumis sativus L.) cultivars by Si application. Braz J Bot 39(2):531–539. https://doi.org/10.1007/s40415-016-0274-y

    Article  Google Scholar 

  • Rajinder SD, Dhindsa PP, Thorpe TA (1981) Leaf senescence correlated with increased levels ofmembrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  Google Scholar 

  • Rezaei MA, Jokar I, Ghorbanli M, Kaviani B, Kharabian-Masouleh A (2012) Morpho-physiological improving effects of exogenous glycine betaine on tomato (Lycopersicum esculentum Mill.) under drought stress conditions. POJ 5(2):79–86

    CAS  Google Scholar 

  • Saidimoradi D, Ghaderi N, Javadi T (2019) Salinity stress mitigation by humic acid application in strawberry https://doi.org/10.1016/j.scienta.2019.108594

    Book  Google Scholar 

  • Sanchez FJ, Andres EF, Tenorıo JL, Ayerbe L (2004) Growth of epicotyls, turgor maintenance, and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crop Res 86:81–90. https://doi.org/10.1016/S0378-4290(03)00121-7

    Article  Google Scholar 

  • Sanchez-Conde MP, Ortega CB (1968) Effect of humic acid on the development and the mineral nutrition of the pepper plant. In: Control De La Fertilizacion De Las Plantas Cutivadas. Cologuio Evr. Medit. Cent. Edafol. Biol Aplic, pp 745–755

    Google Scholar 

  • Shen X, Zhou L, Duan ZY, Li A, Enejı E, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet‑B radiation. J Plant Phys 167:1248–1252. https://doi.org/10.1016/j.jplph.2010.04.011

    Article  CAS  Google Scholar 

  • Shi Y, Zhang Y, Yao HJ, Wu JW, Sun H, Gong HJ (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. vol 78. Sinauer Associates, Sunderland, pp 27–36 https://doi.org/10.1016/j.plaphy.2014.02.009

    Book  Google Scholar 

  • Weber N, Stampar F, Jakopic J, Mikulic-Petkovsek M, Veberic R, Zupanc V (2017) Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J Sci Food Agric 97(3):849–857. https://doi.org/10.1002/jsfa.7806

    Article  CAS  PubMed  Google Scholar 

  • Zanjanı KE, Rad AHS, Naeemi M, Aghdam AM, Taherkhani T (2012) Effects of zeolite and selenium application on some physiological traits and oil yield of medicinal pumpkin (Cucurbita Pepo L.) under drought stress. Curr Res J Biol Sci 4(4):462–470

    Google Scholar 

  • Zonouri M, Javadi T, Ghaderi N (2014) Effect of foliar spraying of ascorbic acid on cell membrane stability, lipid peroxidation, total soluble protein, ascorbate peroxidase, and leaf ascorbic acid under drought stress in grapes. Int J Adv Biol Biomed Res 4(2):349–354

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Author Contribution

KK and IB designed the study and carried out the experiments. KK, IB, SK, and MD analyzed the data, KK, IB, and MD wrote the manuscript. All authors read and approved the final paper.

Funding

This study was supported by the Harran University Scientific Research Projects Commission (HUBAP-17234)

Corresponding author

Correspondence to Kübra Korkmaz.

Ethics declarations

Conflict of interest

K. Korkmaz, I. Bolat, S. Karakas, and M. Dikilitas declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case. Consent to participate: Not applicable. Consent for publication: Not applicable.

Additional information

Availability of data and materials

All data are available at the end of the article, and the materials used in this work are of high quality and grade.

Code availability

Not applicable.

The original online version of this article was revised: In this article Fig. 1, Fig. 2 and the figure legends were incorrect. The figures should have appeared as shown below.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, K., Bolat, I., Karakas, S. et al. Responses to Single and Combined Application of Humic Acid and Silicon Under Water Stress on Strawberry. Erwerbs-Obstbau 64, 523–533 (2022). https://doi.org/10.1007/s10341-022-00692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00692-9

Keywords

Navigation