Skip to main content
Log in

Thermal biology of Tuta absoluta: demographic parameters and facultative diapause

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

A Correction to this article was published on 25 November 2020

This article has been updated

Abstract

The South American tomato pinworm, Tuta absoluta, (SATP) is now a devastating pest worldwide of crops in the family Solanaceae. Most prior studies of SATP’s thermal biology were based on populations from tropical regions, and proved unsuitable for explaining its invasion of large areas of the Palearctic. A more holistic approach to the analysis of its thermal biology is essential background for developing models to assess its invasive potential. Our studies found that SATP has lower and upper thermal thresholds L = 5.37 °C and θU = 35.69 °C, respectively) than South American populations used in prior studies (θL = 7.38 °C and θU = 33.82 °C). Age-specific life tables were used to estimate the effects of temperature on its demographic parameters. Diapause in SATP had not been characterized prior to our study. We found facultative diapause in pupae developing from larvae exposed to relatively low temperatures (i.e., 2 and 5 °C) and short-day length for different exposure periods. The strength of diapause was measured as an increase in post-treatment developmental times of pupae (i.e., degree days) that on average were 2.45–3-fold greater than of pupae reared at favorable temperatures. A lower developmental threshold and a facultative diapause increase the invasive potential of SATP in temperate areas. Knowledge of this thermal biology is essential for predicting the potential geographic spread of this pest and to develop management and control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding authors on reasonable request.

Change history

Abbreviations

SATP:

South American tomato pinworm

θ L :

Lower temperature threshold

θ U :

Upper temperature threshold

R 0 :

Net reproductive rate

λ :

Finite rate of increase

r m :

Intrinsic rate of increase

τ :

Generation time

K :

Degree-day

T :

Temperature

dl :

Minutes day length

E :

Exposure periods

References

  • Anastasaki E, Drizou F, Milonas PG (2018) Electrophysiological and Oviposition Responses of Tuta absoluta Females to Herbivore-Induced Volatiles in Tomato Plants. J Chem Ecol 44 (3):288-298

    CAS  PubMed  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi D-S et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Google Scholar 

  • Bacci L, Silva EM, Martins JC, Soares MA et al (2019) Seasonal variation in natural mortality factors of Tuta absoluta (Lepidoptera: Gelechiidae) in open-field tomato cultivation. J Appl Entomol 143:21–33

    Google Scholar 

  • Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998) English: thershold temperature and thermal constant for development of the South American tomato moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Cienc Investig Agrar 25:133–137

    Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    CAS  PubMed  Google Scholar 

  • Biondi A, Guedes RNC, Wan F-H, Desneux N (2018) Ecology, Worldwide Spread, And Management Of The Invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258

    CAS  PubMed  Google Scholar 

  • Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S et al (2011) The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool 84:543–552

    PubMed  Google Scholar 

  • Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Google Scholar 

  • Briscoe NJ, Porter WP, Sunnucks P, Kearney MR (2012) Stage-dependent physiological responses in a butterfly cause non-additive effects on phenology. Oikos 121:1464–1472

    Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP et al (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Google Scholar 

  • Campos MR, Biondi A, Adiga A, Guedes RNC et al (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796

    Google Scholar 

  • Cherif A, Attia-Barhoumi S, Mansour R, Zappalà L et al (2019) Elucidating key biological parameters of Tuta absoluta on different host plants and under various temperature and relative humidity regimes. Entomol Gen 39:1–7

    Google Scholar 

  • Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34

    Google Scholar 

  • Chi H (2019) TWOSEX-MSChart: a computer program for the age stage, twosex life table analysis. https://140.120.197.173/ecology/Download/Twosex-MSChart.zip.

  • Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Acad Sin Inst Zool Monogr Ser Bull Inst Zool 24:225–240

    Google Scholar 

  • Chi H, You M, Atlıhan R, Smith CL et al (2020) Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol Gen 40:102–123

    Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos T R Soc B 365:3149–3160

    Google Scholar 

  • Cuthbertson GSA, Mathers JJ, Blackburn FL, Korycinska A et al (2013) Population Development of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under simulated UK glasshouse conditions. Insects 4:185–197

    PubMed  PubMed Central  Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological survey of Canada monograph series, Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Canada

    Google Scholar 

  • Danks HV (2007) The elements of seasonal adaptations in insects. Can Entomol 139:1–44

    Google Scholar 

  • Denlinger DL (1986) Dormancy in tropical insects. Annu Rev Entomol 31:239–264

    CAS  PubMed  Google Scholar 

  • Denlinger DL (1991) Relationship between cold hardiness and diapause. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Springer, Boston, pp 174–198. https://doi.org/10.1007/978-1-4757-0190-6_8

    Chapter  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    CAS  PubMed  Google Scholar 

  • Denlinger DL (2008) Why study diapause? Entomol Res 38:1–9

    Google Scholar 

  • Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408

    Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G et al (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    Google Scholar 

  • Flitters NE, Messenger PS (1965) Effect of temperature and humidity on development and potential distribution of the Mexican fruit fly in the United States. Technical bulletin / United States Department of Agriculture. U.S. Dept. of Agriculture, Washington

  • Fu S, Chen C, Xiao L, He H et al (2015) Inheritance of diapause in crosses between the northernmost and the southernmost strains of the asian corn borer Ostrinia furnacalis. PlosONE 10:e0118186

    Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Google Scholar 

  • Gilbert N, Gutierrez AP (1973) A plant-aphid-parasite relationship. J Anim Ecol 42:323–340

    Google Scholar 

  • Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803–823

    Google Scholar 

  • Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42:211–216

    Google Scholar 

  • Guillemaud T, Blin A, Le Goff I, Desneux N et al (2015) The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci Rep 5:8371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez AP (1996) Applied population ecology: a supply-demand approach. Wiley, New York

    Google Scholar 

  • Gutierrez AP, Ponti L, Gilioli G, Baumgärtner J (2018) Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agric For Entomol 20:255–271

    Google Scholar 

  • Gutierrez AP, Ponti L, Herren HR, Baumgärtner J et al (2015) Deconstructing Indian cotton: weather, yields, and suicides. Environ Sci Eur 27:12

    Google Scholar 

  • Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F et al (2019) Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J Pest Sci 92:1317–1327

    Google Scholar 

  • Han P, Lavoir A-V, Le Bot J, Amiens-Desneux E et al (2014) Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep 4:4455

    PubMed  PubMed Central  Google Scholar 

  • Han P, Zhang Y-n, Lu Z-z, Wang S et al (2018) Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an Integrated Pest Management package in Xinjiang, China. Entomol Gen 38:113–125

    Google Scholar 

  • Iltis C, Moreau J, Pecharová K, Thiéry D et al (2020) Reproductive performance of the European grapevine moth Lobesia botrana (Tortricidae) is adversely affected by warming scenario. J Pest Sci 93:679–689

    Google Scholar 

  • Kahrer A, Moyses A, Hochfellner L, Tiefenbrunner W et al (2019) Modelling time-varying low-temperature-induced mortality rates for pupae of Tuta absoluta (Gelechiidae, Lepidoptera). J Appl Entomol 143:1143–1153

    Google Scholar 

  • Kang L, Chen B, Wei J-N, Liu T-X (2009) Roles of thermal adaptation and chemical ecology in liriomyza distribution and control. Annu Rev Entomol 54:127–145

    CAS  PubMed  Google Scholar 

  • Krechemer SF, Foerster AL (2015) Tuta absoluta (Lepidoptera: Gelechiidae): thermal requirements and effect of temperature on development, survival, reproduction and longevity. Eur J Entomol 112:658–663

    Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Google Scholar 

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Glob Change Biol 12:1568–1584

    Google Scholar 

  • Leather SR, Walters KFA, Bale JS (1993) The ecology of insect overwintering. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Springer, Boston, pp 17–46. https://doi.org/10.1007/978-1-4757-0190-6_2

    Chapter  Google Scholar 

  • Lee S, Lee Y, Lee S (2020) Population genetic structure of Anoplophora glabripennis in South Korea: invasive populations in the native range? J Pest Sci 93:1181–1196

    Google Scholar 

  • Lees AD (1956) The physiology and biochemistry of diapause. Annu Rev Entomol 1:1–16

    CAS  Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods 1. Environ Entomol 5:1133–1140

    Google Scholar 

  • Machekano H, Mutamiswa R, Nyamukondiwa C (2018) Evidence of rapid spread and establishment of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in semi-arid Botswana. Agric Food Secur 7:48

    Google Scholar 

  • Manenti T, Sørensen JG, Loeschcke V (2017) Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three Drosophila species. Ecol Evol 7:2716–2724

    PubMed  PubMed Central  Google Scholar 

  • Mansour R, Brévault T, Chailleux A, Cherif A et al (2018) Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol Gen 38:83–112

    Google Scholar 

  • Marchioro C, Foerster L (2011) Development and survival of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) as a function of temperature: effect on the number of generations in tropical and subtropical regions. Neotrop Entomol 40:533–541

    CAS  PubMed  Google Scholar 

  • Martins JC, Picanço MC, Bacci L, Guedes RNC et al (2016) Life table determination of thermal requirements of the tomato borer Tuta absoluta. J Pest Sci 89:897–908

    Google Scholar 

  • Masaki S (1961) Geographic variation of diapause in insects. Faculty of Agriculture, Hirosaki University: 98

  • McNitt J, Chungbaek YY, Mortveit H, Marathe M et al (2019) Assessing the multi-pathway threat from an invasive agricultural pest: Tuta absoluta in Asia. P R Soc B-Biol Sci 286:1–9

    Google Scholar 

  • Musolin DL, Dolgovskaya MY, Protsenko VY, Karpun NN et al (2019) Photoperiodic and temperature control of nymphal growth and adult diapause induction in the invasive Caucasian population of the brown marmorated stink bug, Halyomorpha halys. J Pest Sci 92:621–631

    Google Scholar 

  • Nyamukondiwa C, Kleynhans E, Terblanche JS (2010) Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol Entomol 35:565–575

    Google Scholar 

  • Nyamukondiwa C, Weldon CW, Chown SL, le Roux PC et al (2013) Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J Insect Physiol 59:1199–1211

    CAS  PubMed  Google Scholar 

  • Ponti L, Gilioli G, Biondi A, Desneux N et al (2015a) Physiologically based demographic models streamline identification and collection of data in evidence-based pest risk assessment. EPPO Bull 45:317–322

    Google Scholar 

  • Ponti L, Gutierrez AP, Altieri MA (2015b) Holistic approach in invasive species research: the case of the tomato leaf miner in the Mediterranean Basin. Agroecol Sustain Food Syst 39:436–468

    Google Scholar 

  • Povolný D (1994) Gnorimoschemini of southern South America VI: identification keys, checklist of Neotropical taxa and general considerations (Insecta, Lepidoptera, Gelechiidae). Steenstrupia 20:1–42

    Google Scholar 

  • Rank A, Ramos RS, da Silva RS, Soares JRS et al (2020) Risk of the introduction of Lobesia botrana in suitable areas for Vitis vinifera. J Pest Sci 93:1167–1179

    Google Scholar 

  • Renault D, Laparie M, McCauley SJ, Bonte D (2018) Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu Rev Entomol 63:345–368

    CAS  PubMed  Google Scholar 

  • Requier F, Rome Q, Chiron G, Decante D et al (2019) Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J Pest Sci 92:567–578

    Google Scholar 

  • Roques A, Auger-Rozenberg M-A, Blackburn TM, Garnas J et al (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions 18:907–920

    Google Scholar 

  • Sannino L, Espinosa B (2010) Tuta absoluta: guida alla conoscenza e recenti acquisizioni per una corretta difesa. Edizioni L’Informatore Agrario, Verona, Italy

    Google Scholar 

  • Santana PA, Kumar L, Da Silva RS, Picanço MC (2019) Global geographic distribution of Tuta absoluta as affected by climate change. J Pest Sci 92:1373–1385

    Google Scholar 

  • Sgrò CM, Terblanche JS, Hoffmann AA (2016) What can plasticity contribute to insect responses to climate change? Annu Rev Entomol 61:433–451

    PubMed  Google Scholar 

  • Shirai Y (2000) Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bull Entomol Res 90:357–364

    CAS  PubMed  Google Scholar 

  • Sylla S, Brévault T, Bal AB, Chailleux A et al (2017) Rapid spread of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), an invasive pest in Sub-Saharan Africa. Entomol Gen 36:269–283

    Google Scholar 

  • Tarusikirwa VL, Mutamiswa R, English S, Chidawanyika F et al (2020) Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Therm Biol 90:102598

    CAS  PubMed  Google Scholar 

  • Tauber CA, Tauber MJ (1981) Insect seasonal cycles: genetics and evolution. Annu Rev Ecol Syst 12:281–308

    Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York, NY, USA

    Google Scholar 

  • Tonnang HEZ, Mohamed SF, Khamis F, Ekesi S (2015) Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: implications for phytosanitary measures and management. PlosONE 10:e0135283

    Google Scholar 

  • Torres JB, Faria CA, Evangelista WS, Pratissoli D (2001) Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. Int J Pest Manag 47:173–178

    Google Scholar 

  • Tougeron K (2019) Diapause research in insects: historical review and recent work perspectives. Entomol Exp Appl 167:27–36

    Google Scholar 

  • Van Damme V, Berkvens N, Moerkens R, Berckmoes E et al (2015) Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J Pest Sci 88:533–541

    Google Scholar 

  • Verheggen F, Fontus RB (2019) First record of Tuta absoluta in Haiti. Entomol Gen 38:349–353

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Lionel Salvy, Valérie Frandon, Anne-Violette Lavoir, Christiane Metay-Merrien, Richard Brun, Roger Boll, Sylvain Nuée, Christian Wdziekonski, Sylvain Benhamou, Anouck Lasserre, Lucie S. Monticelli, Yusha Wang, Yanyan Qu, Marianne Araújo Soares, Christine Becker, Peng Han, Timothée Fichant, Tara Malanga, Mathilda Idier, Ha Le-Thu Nguyen and Eva Thomine from INRAe for technical assistance and sharing their expertise during these studies.

Funding

Project ASCII (FP7 IRSES No. 318246) for funding to ND and MRC, the University of Catania (Project 2016-18 "Emergent Pests and Pathogens and Relative Sustainable Strategies - 5A722192113) for financing to AB, the IPM Innovation Lab (USAID Cooperative Agreement No. AID-OAA-L-15-00001) for funding to ND and MRC, and the EUCLID project (H2020-SFS-2014, No. 633999) for funding to PB, EAD and ND. In kind funding accrued from the Center for Sustainable Agricultural Systems, Kensington, CA, USA. LP was supported by the MED-GOLD project that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 776467.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Ribeiro de Campos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval and consent to participate

Not applicable.

Additional information

Communicated by M. Traugott .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, M.R., Béarez, P., Amiens-Desneux, E. et al. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. J Pest Sci 94, 829–842 (2021). https://doi.org/10.1007/s10340-020-01286-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01286-8

Keywords

Navigation