Skip to main content
Log in

The potential of resynthesized lines to provide resistance traits against rape stem weevil in oilseed rape

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe that causes stem distortion, severe disruption of stem growth, and significant yield loss. No resistance has been identified in current B. napus breeding material. Resynthesized lines of oilseed rape can be used to introduce genetic material from the parent species Brassica oleracea L. and B. rapa L. The susceptibility to C. napi of five resynthesized lines and three cultivars of oilseed rape was compared in a multi-choice field plot experiment. Morphological stem traits and stem levels of glucosinolates, carbon, and nitrogen were assessed as potential mediators of resistance. Eggs and larvae of C. napi in stems were counted weekly from the beginning of oviposition to larval maturation and stem pith degeneration in response to oviposition was assessed. Egg counts per stem were negatively dependent on stem length and positively dependent on the levels of five glucosinolates, glucobrassicanapin, glucoalyssin, glucobrassicin, neoglucobrassicin, and gluconasturtiin. The resynthesized line S30 was significantly more resistant to C. napi than the commercial cultivar Sollux, having fewer eggs and larvae. This resistance appeared to be largely antixenotic, due to the combination of a long stem and a paucity of the five key glucosinolates. We propose that resynthesized lines such as S30 should be used to introduce genes determining traits such as long stem length and glucosinolate profile into breeding programs to enhance resistance against C. napi in oilseed rape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alford DV, Nilsson C, Ulber B (2003) Insect pests of oilseed rape crops. In: Alford DV (ed) Biocontrol of oilseed rape pests, 1st edn. Blackwell Science Ltd., Oxford, pp 9–42

    Chapter  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  CAS  PubMed  Google Scholar 

  • Ballanger Y (1987) Nuisibilité du charançon de la tige du colza. Phytoma 384:35–37

    Google Scholar 

  • Barker E, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173

    Article  CAS  Google Scholar 

  • Bartlet E, Parsons D, Williams IH, Clark SJ (1994) The influence of glucosinolates and sugars on feeding by the cabbage stem flea beetle, Psylliodes chrysocephala. Entomol Exp Appl 73:77–83

    Article  CAS  Google Scholar 

  • Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85:257–262

    Article  Google Scholar 

  • Bartlet E, Kiddle G, Williams I, Wallsgrove R (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol Exp Appl 91:163–167

    Article  CAS  Google Scholar 

  • Baur R, Staedler E, Monde K, Takasugi M (1998) Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum. Chemoecology 8:163–168

    Article  CAS  Google Scholar 

  • Blake A, Dosdall LM, Keddie B (2010) Plant nutrients and the spatiotemporal distribution dynamics of Ceutorhynchus obstrictus (Coleoptera: Curculionidae) and its parasitoids. Environ Entomol 39:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Bodnaryk RP (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–2677

    Article  CAS  Google Scholar 

  • Buechi R (1988) Neue Bekaempfungsschwelle fuer den Rapsstengelruessler Ceutorhynchus napi Gyll. Mitt Schweizerischen Landwirtsch 36:110–117

    Google Scholar 

  • Buechi R (1996) Eiablage des Rapsstengelruesslers Ceutorhynchus napi Gyll., in Abhaengigkeit der Stengellaenge bei verschiedenen Rapssorten. Anz Schaedlingskunde Pflanzenschutz Umweltschutz 69:136–139

    Article  Google Scholar 

  • Chew F, Renwick J (1995) Host plant choice in Pieris butterflies. In: Carde RT, Bell WJ (eds) Chemical ecology of insects, 2nd edn. Chapman and Hall, New York, pp 214–238

    Chapter  Google Scholar 

  • Cleemput S, Becker HC (2012) Genetic variation in leaf and stem glucosinolates in resynthesized lines of winter rapeseed (Brassica napus L.). Genet Resour Crop Evol 59:539–546

    Article  CAS  Google Scholar 

  • Cook SM, Smart LE, Martin JL, Murray DA, Watts NP, Williams IH (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomol Exp Appl 119:221–229

    Article  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Cook SM, Skellern MP, Doering TF, Pickett JA (2013) Red oilseed rape? The potential for manipulation of petal colour in control strategies for the pollen beetle (Meligethes aeneus). Arthropod Plant Interact 7:249–258

    Article  Google Scholar 

  • Dechert G, Ulber B (2004) Interactions between the stem-mining weevils Ceutorhynchus napi Gyll. and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) in oilseed rape. Agric For Entomol 6:193–198

    Article  Google Scholar 

  • Després L, David J-P, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Deubert K-H (1952) Ueber das durch die Eiablage von Ceutorrhynchus napi Gyll. (Col. Curc.) verursachte histologische Schadbild an Winterraps. Wissenschaftliche Z Martin-Luther-Universitaet Halle-Wittenberg 2:203–205

    Google Scholar 

  • Deubert K-H (1955) Beitraege zu den Beziehungen zwischen Ceutorrhynchus napi Gyll. (Col. Curc.) und Winterraps hinsichtlich der Gallenbildung mit Ovarienuntersuchungen an verschiedenen Ceutorrhynchus-Arten. Wissenschaftliche Z Martin-Luther-Universitaet Halle-Wittenberg 5:909–932

    Google Scholar 

  • Diederichsen E, Sacristan M (1991) Resynthesis of amphidiploid Brassica species and their clubroot disease reaction. In: Proceedings of the Rapeseed Congress, Saskatoon, Canada, 9–11 July 1991, pp 274–279

  • Dosse G (1951) Der grosse Kohltriebruessler Ceuthorrhynchus napi Gyll. Biologie, Schadenauftreten und Bekaempfung unter besonderer Beruecksichtigung der Gallbildung an Kohlpflanzen: Mit 41 Abb. Z Angew Entomol 32:32–566

    Google Scholar 

  • Eickermann M, Ulber B, Vidal S (2011) Resynthesized lines and cultivars of Brassica napus L. provide sources of resistance to the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)). Bull Entomol Res 101:287–294

    Article  CAS  PubMed  Google Scholar 

  • Geladi P, Kowalski B (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  • Girke A (2002) Neue Genpools aus resynthetisiertem Raps (Brassica napus L.) fuer die Hybridzuechtung. Dissertation, Georg-August University, Goettingen

  • Girke A, Schierholt A, Becker HC (2012) Extending the rapeseed genepool with resynthesized Brassica napus L. I: genetic diversity. Genet Resour Crop Evol 59:1441–1447

    Article  CAS  Google Scholar 

  • Guenthart E (1949) Beitraege zur Lebensweise und Bekaempfung von Ceutorrhynchus quadridens Panz. und Ceutorrhynchus napi Gyll. mit Beobachtungen an weiteren Kohl- und Rapsschaedlingen. Mitt Schweizerischen Entomologischen Ges 22:441–591

    Google Scholar 

  • Hervé MR, Delourme R, Leclair M, Marnet N, Cortesero AM (2014) How oilseed rape (Brassica napus) genotype influences pollen beetle (Meligethes aeneus) oviposition. Arthropod Plant Interact 8:383–392

    Article  Google Scholar 

  • Hilker M, Rohfritsch O, Meiners T (2002) The plant’s response towards insect egg deposition. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition, 1st edn. Blackwell, Berlin, pp 205–233

    Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Renwick J (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. J Chem Ecol 20:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • Kogan M, Ortman EF (1978) Antixenosis—a new term proposed to define Painters nonpreference modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Kurtz B, Karlovsky P, Vidal S (2010) Interaction between western corn rootworm (Coleoptera: Chrysomelidae) larvae and root-infecting Fusarium verticillioides. Environ Entomol 39:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Lancashire PD, Bleiholder H, Boom T, Langelueddeke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Le Pape H, Bronner R (1987) The effects of Ceutorhynchus napi (Curculionidae, Coleoptera) on stem tissue of Brassica napus var. oleifera. In: Labeyrie V, Fabres G, Lachaise D (eds) Insect-plants, 1st edn. Dr W Junk, Dordrecht, pp 207–212

    Google Scholar 

  • Lee RWH, Malchev IT, Rajcan I, Kott LS (2014) Identification of putative quantitative trait loci associated with a flavonoid related to resistance to cabbage seedpod weevil (Ceutorhynchus obstrictus) in canola derived from an intergeneric cross, Sinapis alba × Brassica napus. Theor Appl Genet 127:419–428

    Article  CAS  Google Scholar 

  • Lerin J (1993) Influence of the growth rate of oilseed rape on the splitting of the stem after an attack of Ceutorhynchus napi Gyll. IOBC WPRS Bull 16(9):160–163

    Google Scholar 

  • Malhi SS, Schoenau JJ, Grant CA (2005) A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains. Can J Plant Sci 85:297–307

    Article  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Moyes CL, Raybould AF (2001) The role of spatial scale and intraspecific variation in secondary chemistry in host-plant location by Ceutorhynchus assimilis (Coleoptera: Curculionidae). Proc R Soc Lond B Biol Sci 268:1567–1573

    Article  CAS  Google Scholar 

  • Mrowczynski M (1998) Studies on pest damage of cultivars and lines of winter oilseed rape. IOBC WPRS Bull 21(5):153–154

    Google Scholar 

  • Nuss H (2004) Einfluss der Pflanzedichte und-architektur auf Abundanz und innnerpflanzliche Verteilung staengelminierender Schadinsekten in Winterraps. Dissertation, Georg-August University, Goettingen

  • Olsson G, Ellerstrom S, Tsunoda S, Hinata K, Gomez-Campo C (1980) Polyploidy breeding in Europe. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies, 2nd edn. Scientific Society Press, Tokyo, pp 167–190

    Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Renwick JAA, Radke CD, Sachdev-Gupta K, Staedler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38

    Article  CAS  Google Scholar 

  • Roessingh P, Staedler E, Fenwick GR, Lewis JA, Nielsen JK, Hurter J, Ramp T (1992) Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant extracts. Entomol Exp Appl 65:267–282

    Article  CAS  Google Scholar 

  • Rygulla W, Snowdon R, Eynck C, Koopmann B, von Tiedemann A, Luehs W, Friedt W (2007) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology 97:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Sarfraz M, Dosdall L, Keddie B (2006) Diamond-back moth–host plant interactions: implications for pest management. Crop Prot 25:625–639

    Article  CAS  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Seyis F, Friedt W, Luehs W (2001) Resynthese-Raps (Brassica napus L.) als genetische Ressource fuer die Qualitaets-und Ertragszuechtung. Schriften zu Genetischen Ressourcen 16:91–112

    Google Scholar 

  • Siemens DH, Mitchelolds T (1996) Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ Entomol 25:1344–1353

    Article  CAS  Google Scholar 

  • Smart LE, Blight MM, Hick AJ (1997) Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceutorhynchus assimilis. J Chem Ecol 23:889–902

    Article  CAS  Google Scholar 

  • Tansey JA, Dosdall LM (2011) Differential responses by some insect pests to novel insect-resistant Brassica napus L. In: Proceedings of the International Rapeseed Congress, Prague, Czech Republic, 5–9 July 2011, CD-ROM

  • Thies W (1977) Analysis of glucosinolates in seeds of rapeseed (Brassica napus L.): Concentration of glucosinolates by ion exchanges. Z Pflanzenzuechtung 79:331–335

    CAS  Google Scholar 

  • Ulmer BJ, Dosdall LM (2006) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil. Entomol Exp Appl 121:203–213

    Article  CAS  Google Scholar 

  • Veromann E, Toome M, Kaennaste A, Kaasik R, Copolovici L, Flink J, Ue Niinemets (2013) Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot 43:79–88

    Article  CAS  Google Scholar 

  • Williams IH (2010) The major insect pests of oilseed rape in Europe and their management: an overview. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer Science and Business Media B.V., Dordrecht, pp 1–43

    Chapter  Google Scholar 

  • Zimmer CT, Koehler H, Nauen R (2014) Baseline susceptibility and insecticide resistance monitoring in European populations of Meligethes aeneus and Ceutorhynchus assimilis collected in winter oilseed rape. Entomol Exp Appl 150:279–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank B. Olberg and U. Ammermann (Georg-August University) for technical assistance in glucosinolate analyses and M. Hervé (INRA, France) for supplying the multivariate statistical macro and further assistance. We would also like to thank the technical staff in laboratory, greenhouse, and field: D. Mennerich, B. Tappe, E. Hodyl, M. Knobel, H. Reintke, G. Miotke and all student research assistants. We thank A. Ferguson (afscience.co.uk) for language editing of the manuscript and critical comments. The study was funded by German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) and coordinated by the Board of support for Private Plant Breeding in Germany (GFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike L. Schaefer-Koesterke.

Additional information

Communicated by J.J. Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer-Koesterke, H.L., Brandes, H., Ulber, B. et al. The potential of resynthesized lines to provide resistance traits against rape stem weevil in oilseed rape. J Pest Sci 90, 87–101 (2017). https://doi.org/10.1007/s10340-016-0742-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0742-y

Keywords

Navigation