Skip to main content
Log in

Cytochrome P450 monooxygenase activity levels in phytoplasma-infected and uninfected Amplicephalus curtulus (Hemiptera: Cicadellidae): possible implications of phytoplasma infections

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The process of pass-through and multiplication of phytoplasma in host-insect tissues could cause some pathogenic effects in insect vectors and may increase the susceptibility to some insecticides. We propose that ‘Candidatus phytoplasma ulmi'-infected Amplicephalus curtulus had reduced cytochrome P450 (P450s) activity compared with uninfected leafhoppers. P450s activity and phytoplasmas were quantified in adult A. curtulus at 25, 35 and 45 days after the access acquisition period (AAP) in the head-thorax and abdomen sections. Real-time PCR analysis showed that 67 and 78 % of insect samples were positive to phytoplasma at 35 and 45 days after the AAP, respectively. None of the samples tested positive to phytoplasma at 25 days after the AAP. P450s activity did not change at 35 days of incubation, but 45 days after the AAP, the enzymatic activity remained 112 % higher in phytoplasma-infected than in noninfected leafhoppers. P450s activity in the abdomen and head-thorax sections in phytoplasma-infected leafhoppers was 28 and 81 % more than in uninfected leafhoppers, respectively. Females had a higher concentration of phytoplasma than males, with 38 % more in the abdomen than in the head-thorax section. These results indicate that infection with ‘Ca. Phytoplasma ulmi' alters A. curtulus P450s activity because of phytoplasma invasion in the host, and it is recognized as probably being an exogenous agent for a specific time period in the life of the insect vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arismendi (2014) Transmission of ‘Candidatus Phytoplasma ulmi’ (Elm Yellows, 16SrV-A) by Amplicephalus curtulus (Hemiptera: Cicadellidae) and its effect on the fitness and metabolism of its vector. Doctoral thesis, Universidad Austral de Chile, Chile, p 175

  • Arismendi N, González F, Zamorano A, Andrade N, Pino AM, Fiore N (2011) Molecular identification of ‘Candidatus Phytoplasma fraxini’ in murta and peony in Chile. Bull Insectol 64:S95–S96

    Google Scholar 

  • Arismendi N, Riegel R, Carrillo R (2014) In vivo transmission of ‘Candidatus Phytoplasma ulmi’ by Amplicephalus curtulus (Hemiptera: Cicadellidae) and its effect on ryegrass (Lolium multiflorum Cv. Tama). J Econ Entomol 107:83–91

    Article  CAS  PubMed  Google Scholar 

  • Beanland L, Hoy CW, Miller SA, Nault LR (2000) Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann Entomol Soc Am 93:271–276

    Article  Google Scholar 

  • Bosco D, Palermo S, Mason G, Tedeschi R, Marzachi C, Boccardo G (2002) DNA-based methods for the detection and the identification of phytoplasmas in insect vector extracts. Mol Biotechnol 22:9–18

    Article  CAS  PubMed  Google Scholar 

  • Bressan A, Clair D, Sémétey O, Boudon-Padieu E (2005a) Effect of two strains of Flavescence dorée phytoplasma on the survival and fecundity of the experimental leafhopper vector Euscelidius variegatus Kirschbaum. J Invertebr Pathol 89:144–149

    Article  PubMed  Google Scholar 

  • Bressan A, Girolami V, Boudon-Padieu E (2005b) Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol Exp Appl 115:283–290

    Article  Google Scholar 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Micr 5:200–211

    Article  CAS  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant Micr Interact 17:1175–1184

    Article  CAS  Google Scholar 

  • Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor GW (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617

    CAS  Google Scholar 

  • De Sousa GA, Brun A, Amichot M, Rahmani R, Berge J (1995) A microfluorometric method for measuring ethoxycoumarin-O-deethylase activity on individual Drosophila melanogaster abdomens: interest for screening resistance in insect populations. Anal Biochem 229:86–91

    Article  PubMed  Google Scholar 

  • Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  PubMed  Google Scholar 

  • Duron O, Labbe P, Berticat C, Rousset F, Guillot S, Raymond M, Weill M (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314

    Article  CAS  PubMed  Google Scholar 

  • Fiore N, Prodan S, Paltrinieri S, Gajardo A, Botti S, Pino AM, Montealegre J, Bertaccini A (2007) Molecular characterization of phytoplasmas in Chilean grapevines. Bull Insectol 60:331–332

    Google Scholar 

  • Frost KE, Willis DK, Groves RL (2011) Detection and variability of aster yellows phytoplasma titer in tis insect vector, Macrosteles quadrilineatus (Hemiptera: Cicadellidae). J Econ Entomol 104:1800–1815

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Zamorano A, Pino AM, Paltrinieri S, Bertaccini A, Fiore N (2011) Identification of phytoplasma belonging to X-disease group in cherry in Chile. Bull Insectol 64:S235–S236

    Google Scholar 

  • Gui Z, Hou C, Liu T, Qin G, Li M, Jin B (2009) Effects of insect viruses and pesticides on glutathione s-transferase activity and gene expression in Bombyx mori. J Econ Entomol 102:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Hepp R, Vargas M (2002) Detección por PCR del agente causal de la marchitez amarilla de la remolacha en cicadélidos (Homóptera: Cicadellidae) asociados al cultivo de la remolacha. Fitopatología 37:67–108

    Google Scholar 

  • Honĕk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492

    Article  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  PubMed  Google Scholar 

  • Marzachì C, Bosco D (2005) Relative quantification of chrysanthemum yellows (16SrI) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol Biotechnol 30:117–127

    Article  PubMed  Google Scholar 

  • Reyes M, Rocha K, Alarcón L, Siegwart M, Sauphanor B (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pestic Biochem Physiol 102:45–50

    Article  CAS  Google Scholar 

  • Schneider B, Seemuller E (1994) Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl Environ Microbiol 60:3409–3412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari S, Pelz-Stelinski K, Stelinski LL (2010) Effect of ‘Candidatus Liberibacter asiaticus’ infection on susceptibility of Asian citrus psyllid, Diaphorina citri, to selected insecticides. Pest Manag Sci 67:94–99

    Article  PubMed  Google Scholar 

  • Tiwari S, Pelz-Stelinski K, Mann R, Stelinski L (2011a) Gluthatione transferase and cytochrome P450 (general oxidase) activity levels in ‘Candidatus Liberibacter asiaticus’-infected and uninfected Asian citrus psyllid (Hemiptera: Psyllidae). Ann Entomol Soc Am 104:297–305

    Article  CAS  Google Scholar 

  • Tiwari S, Gondhalekar AD, Mann RS, Scharf ME, Stelinski LL (2011b) Characterization of five CYP4 genes from Asian citrus psyllid and their expression levels in ‘Candidatus Liberibacter asiaticus’-infected and uninfected psyllids. Insect Mol Biol 20:733–744

    Article  CAS  PubMed  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for doctoral theses, AT-24100081, and the Chilean program of scholarship for graduate students, D-21080534, from the National Commission for Scientific and Technological Research, CONICYT, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolberto L. Arismendi.

Additional information

Communicated by C. Cutler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arismendi, N.L., Reyes, M. & Carrillo, R. Cytochrome P450 monooxygenase activity levels in phytoplasma-infected and uninfected Amplicephalus curtulus (Hemiptera: Cicadellidae): possible implications of phytoplasma infections. J Pest Sci 88, 657–663 (2015). https://doi.org/10.1007/s10340-014-0642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0642-y

Keywords

Navigation