Skip to main content
Log in

Symplectic Analysis on Coupling Behaviors of Spatial Flexible Damping Beam

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam, the simulation speed still needs to be improved. In this paper, the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables, and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly. Compared with the simulation speed of the complex structure-preserving method, the simulation speed of the symplectic Runge–Kutta method is faster, which benefits from the pretreatment step. The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples. From the numerical results about the effect of the initial radial velocity, it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly. In addition, the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu W, Zhang C, Deng Z. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun Nonlinear Sci Numer Simul. 2020;84:105199.

    MathSciNet  MATH  Google Scholar 

  2. Hu W, Ye J, Deng Z. Internal resonance of a flexible beam in a spatial tethered system. J Sound Vib. 2020;475:115286.

    Google Scholar 

  3. Hu W, Song M, Deng Z. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. J Sound Vib. 2018;412:58–73.

    Google Scholar 

  4. Hu W, Li Q, Jiang X, Deng Z. Coupling dynamic behaviors of spatial flexible beam with weak damping. Int J Numer Methods Eng. 2017;111:660–75.

    MathSciNet  Google Scholar 

  5. Hu W, Deng Z. Non-sphere perturbation on dynamic behaviors of spatial flexible damping beam. Acta Astronaut. 2018;152:196–200.

    Google Scholar 

  6. Fu B, Sperber E, Eke F. Solar sail technology-A state of the art review. Prog Aerosp Sci. 2016;86:1–19.

    Google Scholar 

  7. Cartmell MP, McKenzie DJ. A review of space tether research. Prog Aerosp Sci. 2008;44:1–21.

    Google Scholar 

  8. Shabana AA. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn. 1997;1:339–48.

    MATH  Google Scholar 

  9. Shabana AA. Dynamics of multibody systems. New York: Wiley; 1989.

    MATH  Google Scholar 

  10. Shabana AA, Schwertassek R. Equivalence of the floating frame of reference approach and finite element formulations. Int J Non-Linear Mech. 1998;33:417–32.

    MATH  Google Scholar 

  11. De Veubeke BF. The dynamics of flexible bodies. Int J Eng Sci. 1976;14:895–913.

    MATH  Google Scholar 

  12. Shabana AA, Hussien HA, Escalona JL. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. J Mech Des. 1998;120:188–95.

    Google Scholar 

  13. Omar MA, Shabana AA. A two-dimensional shear deformable beam for large rotation and deformation problems. J Sound Vib. 2001;243:565–76.

    Google Scholar 

  14. Shen Z, Li P, Liu C, Hu G. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 2014;77:1019–33.

    Google Scholar 

  15. Hu W, Tian Q, Hu H. Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 2014;75:653–71.

    MathSciNet  Google Scholar 

  16. Orzechowski G, Shabana AA. Analysis of warping deformation modes using higher order ANCF beam element. J Sound Vib. 2016;363:428–45.

    Google Scholar 

  17. Li Q, Deng Z, Zhang K, Huang H. Unified modeling method for large space structures using absolute nodal coordinate. AIAA J. 2018;56:4146–57.

    Google Scholar 

  18. Luo CQ, Sun JL, Wen H, Jin DP. Dynamics of a tethered satellite formation for space exploration modeled via ANCF. Acta Astronaut. 2020;177:882–90.

    Google Scholar 

  19. Cavin R III, Dusto A. Hamilton’s principle-finite-element methods and flexible body dynamics. AIAA J. 1977;15:1684–90.

    MATH  Google Scholar 

  20. Gerstmayr J. Strain tensors in the absolute nodal coordinate and the floating frame of reference formulation. Nonlinear Dyn. 2003;34:133–45.

    MathSciNet  MATH  Google Scholar 

  21. Berzeri M, Campanelli M, Shabana AA. Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst Dyn. 2001;5:21–54.

    MATH  Google Scholar 

  22. Dibold M, Gerstmayr J, Irschik H. A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. J Comput Nonlinear Dyn. 2009;4:021006.

    Google Scholar 

  23. Hartweg S, Heckmann A. Moving loads on flexible structures presented in the floating frame of reference formulation. Multibody Syst Dyn. 2016;37:195–210.

    MathSciNet  MATH  Google Scholar 

  24. Lozovskiy A, Dubois F. The method of a floating frame of reference for non-smooth contact dynamics. Eur J Mech a-Solids. 2016;58:89–101.

    MathSciNet  MATH  Google Scholar 

  25. Cammarata A, Pappalardo CM. On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mech Syst Signal Process. 2020;142:106745.

    Google Scholar 

  26. Cammarata A. Global flexible modes for the model reduction of planar mechanisms using the finite-element floating frame of reference formulation. J Sound Vib. 2020;489:115668.

    Google Scholar 

  27. Hu W, Xu M, Song J, Gao Q, Deng Z. Coupling dynamic behaviors of flexible stretching hub-beam system. Mech Syst Signal Process. 2021;151:107389.

    Google Scholar 

  28. Hu W, Xu M, Jiang R, Zhang C, Deng Z. Wave propagation in non-homogeneous asymmetric circular plate. Int J Mech Mater Des. 2021. https://doi.org/10.1007/s42417-021-00355-1.

    Article  Google Scholar 

  29. Hu W, Huai Y, Xu M, Feng X, Jiang R, Zheng Y, Deng Z. Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech Syst Signal Process. 2021;159:107833.

    Google Scholar 

  30. Hu W, Yu L, Deng Z. Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mech Solida Sin. 2020;33:51–60.

    Google Scholar 

  31. Hu W, Wang Z, Zhao Y, Deng Z. Symmetry breaking of infinite-dimensional dynamic system. Appl Math Lett. 2020;103:106207.

    MathSciNet  MATH  Google Scholar 

  32. Hu WP, Deng ZC, Han SM, Zhang WR. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J Comput Phys. 2013;235:394–406.

    MathSciNet  MATH  Google Scholar 

  33. Sanz-Serna JM. Symplectic Runge–Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. SIAM Rev. 2016;58:3–33.

    MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna JM. Runge–Kutta schemes for Hamiltonian systems. BIT Numer Math. 1988;28:877–83.

    MathSciNet  MATH  Google Scholar 

  35. Feng K. On difference schemes and symplectic geometry. In: Proceeding of the 1984 Beijing symposium on differential geometry and differential equations, Science Press, Beijing, 1984;42–58.

  36. Lim CW, Xu XS. Symplectic elasticity: theory and applications. Appl Mech Rev. 2010;63:050802.

    Google Scholar 

  37. Lim CW, Lue CF, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int J Eng Sci. 2009;47:131–40.

    MathSciNet  MATH  Google Scholar 

  38. Lim CW, Cui S, Yao WA. On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int J Solids Struct. 2007;44:5396–411.

    MathSciNet  MATH  Google Scholar 

  39. Wang DL, Xiao AG, Li XY. Parametric symplectic partitioned Runge–Kutta methods with energy-preserving properties for Hamiltonian systems. Comput Phys Commun. 2013;184:303–10.

    MathSciNet  MATH  Google Scholar 

  40. Jay L. Symplectic partitioned Runge–Kutta methods for constrained Hamiltonian systems. SIAM J Numer Anal. 1996;33:368–87.

    MathSciNet  MATH  Google Scholar 

  41. Calvo MP, Sanzserna JM. High-order symplectic Runge–Kutta–Nyström methods. SIAM J Sci Comput. 1993;14:1237–52.

    MathSciNet  MATH  Google Scholar 

  42. Hu W, Yin T, Zheng W, Deng Z. Symplectic analysis on orbit-attitude coupling dynamic problem of spatial rigid rod. J Vib Control. 2020;26:1614–24.

    MathSciNet  Google Scholar 

  43. Hu W, Huai Y, Xu M, Deng Z. Coupling dynamic characteristics of simplified model for tethered satellite system. Acta Mechanica Sinica. 2021. https://doi.org/10.1007/s10409-021-01108-9.

    Article  MathSciNet  Google Scholar 

  44. Kirstein PT, Kino GS. Solution to the equations of space-charge flow by the method of separation of variables. J Appl Phys. 1958;29:1758–67.

    MATH  Google Scholar 

  45. Martin MH. A generalization of the method of separation of variables. J Rational Mech Anal. 1953;2:315–27.

    MathSciNet  MATH  Google Scholar 

  46. Wu C, Rui W. Method of separation variables combined with homogenous balanced principle for searching exact solutions of nonlinear time-fractional biological population model. Commun Nonlinear Sci Numer Simul. 2018;63:88–100.

    MathSciNet  MATH  Google Scholar 

  47. Sanzserna JM. Symplectic Runge–Kutta and related methods—recent results. Physica D-Nonlinear Phenomena. 1992;60:293–302.

    MathSciNet  Google Scholar 

  48. Saito S, Sugiura H, Mitsui T. Family of symplectic implicit Runge–Kutta formulas. BIT. 1992;32:539–43.

    MathSciNet  MATH  Google Scholar 

  49. Zhou W, Zhang J, Hong J, Song S. Stochastic symplectic Runge–Kutta methods for the strong approximation of Hamiltonian systems with additive noise. J Comput Appl Math. 2017;325:134–48.

    MathSciNet  MATH  Google Scholar 

  50. Reich S. Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J Comput Phys. 2000;157:473–99.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (12172281, 11972284 and 11872303), Fund for Distinguished Young Scholars of Shaanxi Province (2019JC-29), Foundation Strengthening Programme Technical Area Fund (2021-JCJQ-JJ-0565), Fund of the Youth Innovation Team of Shaanxi Universities and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (GZ19103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Xi, X., Zhai, Z. et al. Symplectic Analysis on Coupling Behaviors of Spatial Flexible Damping Beam. Acta Mech. Solida Sin. 35, 541–551 (2022). https://doi.org/10.1007/s10338-021-00297-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00297-x

Keywords

Navigation